Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Periodic orbits for Hamiltonian systems in cotangent bundles

Author: Christophe Golé
Journal: Trans. Amer. Math. Soc. 343 (1994), 327-347
MSC: Primary 58E05; Secondary 34C25, 58F05, 58F22
MathSciNet review: 1232186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of at least $ \operatorname{cl}(M)$ periodic orbits for certain time-dependent Hamiltonian systems on the cotangent bundle of an arbitrary compact manifold M. These Hamiltonians are not necessarily convex but they satisfy a certain boundary condition given by a Riemannian metric on M. We discretize the variational problem by decomposing the time-1 map into a product of "symplectic twist maps". A second theorem deals with homotopically non-trivial orbits of negative curvature.

References [Enhancements On Off] (What's this?)

  • [AM] R. Abraham and J. E. Marsden, Foundation of mechanics, 2nd ed., Addison-Wesley, Reading, MA, 1978. MR 515141 (81e:58025)
  • [Ar1] V. I. Arnold, Sur une propriété topologique des applications globalement cannoniques de la mécanique classique, C. R. Acad. Sci. Paris Ser. I Math. 261 (1965), Groupe 1. MR 0193645 (33:1861)
  • [Ar2] -, Mathematical methods of classical mechanics, Springer-Verlag, Berlin and New York, 1978, Appendix 9. MR 0690288 (57:14033b)
  • [AL] S. Aubry and P. Y. LeDaeron, The discrete Frenkel-Kontarova model and its extensions. I: Exact results for ground states, Physica 8D (1983), 381-422. MR 719634 (85f:58032)
  • [BG] A. Banyaga and C. Golé, A remark on a conjecture of Arnold: linked spheres and fixed points, Proc. Conf. on Hamiltonian Systems and Celestial Mechanics (Guanajuato) (1993).
  • [BK] D. Bernstein and A. B. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invent. Math. 88 (1987), 225-241. MR 880950 (88i:58048)
  • [BP] M. Baily and L. Polterovitch, Hamiltonian diffeomorphisms and Lagrangian distributions, preprint, Tel Aviv University, 1991.
  • [Ch1] M. Chaperon, Quelques questions de géométrie symplectique, Séminaire. Bourbaki, no. 610, 1982/83.
  • [Ch2] -, Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 293-296. MR 765426 (86f:58049)
  • [Co] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, RI, 1978. MR 511133 (80c:58009)
  • [CZ1] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. (1983). MR 707347 (85e:58044)
  • [CZ2] -, Morse type index theory for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253. MR 733717 (86b:58021)
  • [D] R. Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. Ecole Norm. Sup. (4) 21 (1988), 1-46. MR 944100 (89m:58113)
  • [DNF] B. Doubrovine, S. Novikov, and A. Fomenko, Géométrie contemporaine, vol. 3, "Mir", Moscow, 1987 (see also English translation in Springer-Verlag).
  • [F1] A. Floer, A refinement of Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynamical Systems 7 (1987). MR 886372 (88g:58143)
  • [F2] -, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513-547. MR 965228 (90f:58058)
  • [GHL] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Springer-Verlag, Berlin and New York, 1987. MR 909697 (88k:53001)
  • [G1] C. Golé, Periodic points for monotone symplectomorphisms of $ {\mathbb{T}^n} \times {\mathbb{R}^n}$, Ph.D. thesis, Boston University, 1989.
  • [G2] -, Ghost circles for twist maps, IMA preprint, 1990; J. Differential Equations 97 (1992). MR 1161316 (93h:58115)
  • [GH] C. Golé and G. R. Hall, Poincaré's proof of Poincaré's last geometric theorem, Proc. Workshop on Twist Maps, IMA Springer (to appear). MR 1219354 (94i:58160)
  • [Gr] M. J. Greenberg, Lectures on algebraic topology, Math. Lecture Note Ser., 5th printing, 1977.
  • [H] M. R. Herman, Existence et non existence de Tors invariants par des difféomorphismes symplectiques, Sém. sur les Équations aux Dérivés Partielles, Ecole Polytechnique, Palaiseau, 1988. MR 1018186 (90m:58070)
  • [J] F. W. Josellis, Global periodic orbits for Hamiltonian systems on $ {{\mathbf{T}}^n} \times {{\mathbf{R}}^n}$, Ph.D. thesis, no. 9518, ETH Zürich, 1991.
  • [Ka] A. Katok, Some remarks on Birkhoff and Mather twist map theorems, Ergodic Theory Dynamical Systems 2 (1982), 185-194. MR 693974 (84m:58041)
  • [K1] W. Klingenberg, Riemannian geometry, De Gruyter Stud. Math., DeGruyter, Berlin, 1982. MR 666697 (84j:53001)
  • [K-M] H. Kook and J. Meiss, Periodic orbits for reversible, symplectic mappings, Physica D 35 (1989), 65-86. MR 1004186 (90h:58069)
  • [L] P. LeCalvez, Existence d'orbits de Birkhoff généralisées pour les difféomorphismes conservatifs de l'anneau, preprint, Univ. Paris-Sud, Orsay, 1989.
  • [McD] D. McDuff, Elliptic methods in symplectic goemetry, Bull. Amer. Math. Soc. 23 (1990). MR 1039425 (91i:58046)
  • [MM] R. S. McKay and J. Meiss, Linear stability of periodic orbits in Lagrangian systems, Phys. Lett. A98 (1983), 92. MR 721605 (85a:58031)
  • [MMS] R. S. McKay, J. Meiss, and J. Stark, Converse KAM theory for symplectic twist maps, Nonlinearity 2 (1989), 469-512. MR 1020442 (90i:58058)
  • [Ma] J. Mather, Acton minimizing invariant measures for positive definitie Lagrangian systems, preprint, ETH, Zürich, 1989. MR 1109661 (92m:58048)
  • [Mi] J. Milnor, Morse theory, Princeton Univ. Press, Princeton, NJ, 1969. MR 0163331 (29:634)
  • [Mo1] J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Lecture Notes in Math., vol. 597, Springer-Verlag, Berlin and New York, 1977, pp. 464-494. MR 0494305 (58:13205)
  • [Mo2] -, Monotone twist mappings and the calculus of variations, Ergodic Theory Dynamical Systems 6 (1986), 401-413. MR 863203 (88a:58076)
  • [S] J. C. Sikorav, Sur les immersions lagrangiennes admettant une phase génératrice globale, C. R. Acad. Sci. Paris Ser. I Math. 320 (1986), 119-122. MR 830282 (87h:58070)
  • [V] C. Viterbo, Intersection de sous variétés Lagrangiennes, fonctionnelles d'action et indice de systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987), 361-390. MR 926533 (89b:58081)
  • [V2] -, Symplectic topology as the geometry of generaing functions, preprint, Univ. Paris-Dauphine, 1991.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E05, 34C25, 58F05, 58F22

Retrieve articles in all journals with MSC: 58E05, 34C25, 58F05, 58F22

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society