Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Some cubic modular identities of Ramanujan

Authors: J. M. Borwein, P. B. Borwein and F. G. Garvan
Journal: Trans. Amer. Math. Soc. 343 (1994), 35-47
MSC: Primary 11B65; Secondary 11F27, 33D10
MathSciNet review: 1243610
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There is a beautiful cubic analogue of Jacobi's fundamental theta function identity: $ \theta _3^4 = \theta _4^4 + \theta _2^4$. It is

$\displaystyle {\left({\sum\limits_{n,m = - \infty }^\infty {{q^{{n^2} + nm + {m... ...+ (n + \frac{1}{3})(m + \frac{1}{3}) + {{(m + \frac{1}{3})}^2}}}} } \right)^3}.$

Here $ \omega = \exp (2\pi i/3)$. In this note we provide an elementary proof of this identity and of a related identity due to Ramanujan. We also indicate how to discover and prove such identities symbolically.

References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR 0557013
  • [2] Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0125252
  • [3] Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903
  • [4] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
  • [5] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701. MR 1010408, 10.1090/S0002-9947-1991-1010408-0
  • [6] -, A remarkable cubic iteration, Computational Methods and Function Theory, Lecture Notes in Math., vol. 1435, Springer-Verlag, New York, 1990.
  • [7] John A. Ewell, On the enumerator for sums of three squares, Fibonacci Quart. 24 (1986), no. 2, 150–153. MR 843964
  • [8] Nathan J. Fine, Basic hypergeometric series and applications, Mathematical Surveys and Monographs, vol. 27, American Mathematical Society, Providence, RI, 1988. With a foreword by George E. Andrews. MR 956465
  • [9] O. Kolberg, Note on the Eisenstein series of $ {\Gamma _0}(p)$, Universitet i Bergen Årbok, Naturvitenskapelig rekke, Nr. 15, 1959.
  • [10] Louis W. Kolitsch, A congruence for generalized Frobenius partitions with 3 colors modulo powers of 3, Analytic number theory (Allerton Park, IL, 1989) Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 343–348. MR 1084189
  • [11] L. Lorenz, Bidrag til tallenes theori, Tidsskrift for Mathematik (3) 1 (1871), 97-114.
  • [12] Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
  • [13] Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
  • [14] Bruno Schoeneberg, Elliptic modular functions: an introduction, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt; Die Grundlehren der mathematischen Wissenschaften, Band 203. MR 0412107

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11B65, 11F27, 33D10

Retrieve articles in all journals with MSC: 11B65, 11F27, 33D10

Additional Information

Keywords: Theta functions, q-series, eta function, modular forms, cubic modular equations, hypergeometric functions
Article copyright: © Copyright 1994 American Mathematical Society