Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Le théorème de Fermat-Goss


Author: Laurent Denis
Journal: Trans. Amer. Math. Soc. 343 (1994), 713-726
MSC: Primary 11R58; Secondary 11D41
DOI: https://doi.org/10.1090/S0002-9947-1994-1195509-1
MathSciNet review: 1195509
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The analogue of the Fermat equation and of the Fermat conjecture is studied by Goss [G], on the rational function fields in characteristic $ p > 0$. We prove here that this equation has no nontrivial solutions. When $ q = 2$, the method uses the canonical height on the t-module constructed in [D]. This method also gives finiteness theorems for some generalization of the Fermat equation in higher dimension.


References [Enhancements On Off] (What's this?)

  • [A] G. Anderson, t-motives, Duke Math. J. 53 (1986), 457-502. MR 850546 (87j:11042)
  • [A.T.] G. Anderson and D. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. (2) 132 (1990), 159-191. MR 1059938 (91h:11046)
  • [D] L. Denis, Hauteurs canoniques et modules de Drinfeld, Math. Ann. 294 (1992), 213-223. MR 1183402 (94d:11038)
  • [Dr] V. G. Drinfeld, Elliptic modules, Math. USSR-Sb. 23 (1974), 561-592. MR 0384707 (52:5580)
  • [G] D. Goss, On a Fermat equation arising in the arithmetic theory of function fields, Math. Ann. 261 (1982), 269-286. MR 679788 (85c:11115)
  • [H] D. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. MR 0330106 (48:8444)
  • [L] S. Lang, Fundamentals of diophantine geometry, Springer-Verlag, Berlin and New York, 1983. MR 715605 (85j:11005)
  • [M] R. C. Mason, Diophantine equations over function fields, London Math. Soc. Lecture Notes Ser. No. 96, Cambridge Univ. Press, London and New York. MR 754559 (86b:11026)
  • [S] P. Samuel, Lectures on old and new results on algebraic curves, Tata Inst. Fund. Res., Bombay, 1966. MR 0222088 (36:5140)
  • [V] J. V. Voloch, A Diophantine problem on algebraic curves over function fields of positive characteristic, Bull. Soc. Math. France 119 (1991), 121-126. MR 1101942 (92g:11061)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R58, 11D41

Retrieve articles in all journals with MSC: 11R58, 11D41


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1195509-1
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society