Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Radially symmetric solutions to a Dirichlet problem involving critical exponents


Authors: Alfonso Castro and Alexandra Kurepa
Journal: Trans. Amer. Math. Soc. 343 (1994), 907-926
MSC: Primary 35B05; Secondary 35J65
DOI: https://doi.org/10.1090/S0002-9947-1994-1207581-0
MathSciNet review: 1207581
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we answer, for $ N = 3,4$, the question raised in [1] on the number of radially symmetric solutions to the boundary value problem $ - \Delta u(x) = \lambda u(x) + u(x)\vert u(x){\vert^{4/(N - 2)}}$, $ x \in B: = \{ x \in {R^N}:\left\Vert x \right\Vert < 1\} $, $ u(x) = 0$, $ x \in \partial B$, where $ \Delta $ is the Laplacean operator and $ \lambda > 0$. Indeed, we prove that if $ N = 3,4$, then for any $ \lambda > 0$ this problem has only finitely many radial solutions. For $ N = 3,4,5$ we show that, for each $ \lambda > 0$, the set of radially symmetric solutions is bounded. Moreover, we establish geometric properties of the branches of solutions bifurcating from zero and from infinity.


References [Enhancements On Off] (What's this?)

  • [1] F. Atkinson, H. Brezis, and L. Peletier, Solutions d'equations elliptiques avec exposant de Sobolev critique qui changent de signe, C.R. Acad. Sci. Paris Ser. I Math. 306 (1988), 711-714. MR 944417 (89k:35088)
  • [2] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. MR 709644 (84h:35059)
  • [3] A. Castro and A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987), 56-64. MR 897070 (88j:35058)
  • [4] A. Castro and A. Kurepa, Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities, Trans. Amer. Math. Soc. 315 (1989), 353-372. MR 933323 (90g:35053)
  • [5] G. Cerami, Elliptic equations with critical growth, College on Variational Problems in Analysis, Lecture Notes SMR 281/24, Internat. Centre for Theoretical Physics, Trieste, Italy, 1988.
  • [6] G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289-306. MR 867663 (88b:35074)
  • [7] M. G. Crandall, and P. M. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR 0288640 (44:5836)
  • [8] M. K. Kwong, Uniqueness of positive solutions for $ \Delta u - u + {u^p} = 0$ in $ {R^n}$, Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 969899 (90d:35015)
  • [9] S. I. Pohozaev, Eigenfunctions of the equation $ \Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl. 6 (1965), 1408-1411.
  • [10] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703. MR 855181 (88b:35072)
  • [11] M. Shinbrot and R. Welland, The Cauchy-Kowalewskaya theorem, J. Math. Anal. Appl. 55 (1976), 757-772. MR 0492756 (58:11827)
  • [12] S. Solimini, On the existence of infinitely many radial solutions for some elliptic problems, Rev. Mat. Apl. 9 (1987), 75-86. MR 926233 (89f:35086)
  • [13] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sci. Norm. Sup. Pisa 22 (1968), 265-274. MR 0240748 (39:2093)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B05, 35J65

Retrieve articles in all journals with MSC: 35B05, 35J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1207581-0
Keywords: Critical exponent, radially symmetric solutions, Dirichlet problem, nodal curves, bifurcation
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society