Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the force between rotating co-axial black holes


Author: Gilbert Weinstein
Journal: Trans. Amer. Math. Soc. 343 (1994), 899-906
MSC: Primary 83C57
DOI: https://doi.org/10.1090/S0002-9947-1994-1214787-3
MathSciNet review: 1214787
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the force between rotating coaxial black holes, as it was defined in [9 and 10]. We show that under a certain limit, the force is attractive, and in fact tends to infinity. This lends support to the conjecture that the force is always positive.


References [Enhancements On Off] (What's this?)

  • [1] R. Bach and H. Weyl, Neue Lösungen der Einsteinschen Gravitationsgleichungen, Math. Z. 13 (1921), 132-145.
  • [2] Brandon Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972) Gordon and Breach, New York, 1973, pp. 57–214. MR 0465047
  • [3] B. Carter, Bunting identity and Mazur identity for nonlinear elliptic systems including the black hole equilibrium problem, Comm. Math. Phys. 99 (1985), no. 4, 563–591. MR 796013
  • [4] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
  • [5] Yan Yan Li and Gang Tian, Regularity of harmonic maps with prescribed singularities, Comm. Math. Phys. 149 (1992), no. 1, 1–30. MR 1182409
  • [6] Yan Yan Li and Gang Tian, Nonexistence of axially symmetric, stationary solution of Einstein vacuum equation with disconnected symmetric event horizon, Manuscripta Math. 73 (1991), no. 1, 83–89. MR 1124312, https://doi.org/10.1007/BF02567630
  • [7] R. Penrose, Some unsolved problems in classical general relativity, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 631–668. MR 645761
  • [8] D. C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975), 905-906.
  • [9] Gilbert Weinstein, On rotating black holes in equilibrium in general relativity, Comm. Pure Appl. Math. 43 (1990), no. 7, 903–948. MR 1072397, https://doi.org/10.1002/cpa.3160430705
  • [10] Gilbert Weinstein, The stationary axisymmetric two-body problem in general relativity, Comm. Pure Appl. Math. 45 (1992), no. 9, 1183–1203. MR 1177481, https://doi.org/10.1002/cpa.3160450907

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 83C57

Retrieve articles in all journals with MSC: 83C57


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1214787-3
Keywords: Black holes, Einstein's vacuum equations, stationary, rotation
Article copyright: © Copyright 1994 American Mathematical Society