On the force between rotating co-axial black holes

Author:
Gilbert Weinstein

Journal:
Trans. Amer. Math. Soc. **343** (1994), 899-906

MSC:
Primary 83C57

DOI:
https://doi.org/10.1090/S0002-9947-1994-1214787-3

MathSciNet review:
1214787

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the force between rotating coaxial black holes, as it was defined in [9 and 10]. We show that under a certain limit, the force is attractive, and in fact tends to infinity. This lends support to the conjecture that the force is always positive.

**[1]**R. Bach and H. Weyl, Neue*Lösungen der Einsteinschen Gravitationsgleichungen*, Math. Z.**13**(1921), 132-145.**[2]**Brandon Carter,*Black hole equilibrium states*, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972) Gordon and Breach, New York, 1973, pp. 57–214. MR**0465047****[3]**B. Carter,*Bunting identity and Mazur identity for nonlinear elliptic systems including the black hole equilibrium problem*, Comm. Math. Phys.**99**(1985), no. 4, 563–591. MR**796013****[4]**S. W. Hawking and G. F. R. Ellis,*The large scale structure of space-time*, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR**0424186****[5]**Yan Yan Li and Gang Tian,*Regularity of harmonic maps with prescribed singularities*, Comm. Math. Phys.**149**(1992), no. 1, 1–30. MR**1182409****[6]**Yan Yan Li and Gang Tian,*Nonexistence of axially symmetric, stationary solution of Einstein vacuum equation with disconnected symmetric event horizon*, Manuscripta Math.**73**(1991), no. 1, 83–89. MR**1124312**, https://doi.org/10.1007/BF02567630**[7]**R. Penrose,*Some unsolved problems in classical general relativity*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 631–668. MR**645761****[8]**D. C. Robinson,*Uniqueness of the Kerr black hole*, Phys. Rev. Lett.**34**(1975), 905-906.**[9]**Gilbert Weinstein,*On rotating black holes in equilibrium in general relativity*, Comm. Pure Appl. Math.**43**(1990), no. 7, 903–948. MR**1072397**, https://doi.org/10.1002/cpa.3160430705**[10]**Gilbert Weinstein,*The stationary axisymmetric two-body problem in general relativity*, Comm. Pure Appl. Math.**45**(1992), no. 9, 1183–1203. MR**1177481**, https://doi.org/10.1002/cpa.3160450907

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
83C57

Retrieve articles in all journals with MSC: 83C57

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1214787-3

Keywords:
Black holes,
Einstein's vacuum equations,
stationary,
rotation

Article copyright:
© Copyright 1994
American Mathematical Society