Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fractal properties of invariant subsets for piecewise monotonic maps on the interval


Authors: Franz Hofbauer and Mariusz Urbański
Journal: Trans. Amer. Math. Soc. 343 (1994), 659-673
MSC: Primary 58F11; Secondary 28D05, 58F13
DOI: https://doi.org/10.1090/S0002-9947-1994-1232188-9
MathSciNet review: 1232188
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be a piecewise monotonic transformation on [0, 1] and let A be a T-invariant subset, which has positive topological entropy and satisfies the Darboux property. A general existence theorem for conformal measures on A is proved. This is then used to show equality of the dynamical dimension of A and the minimal zero of a certain pressure function.


References [Enhancements On Off] (What's this?)

  • [1] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math., vol. 527, Springer-Verlag, Berlin, Heidelberg, and New York, 1976. MR 0457675 (56:15879)
  • [2] M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-587. MR 1014246 (92k:58155)
  • [3] -, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. MR 1099090 (92k:58153)
  • [4] -, On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity 4 (1991), 365-384. MR 1107011 (92f:58097)
  • [5] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. MR 867284 (88d:28001)
  • [6] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. MR 843500 (87k:58126)
  • [7] -, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonie map of the interval, Lyapunov Exponents (L. Arnold, H. Crauel, and J.-P. Eckmann, eds.), Lecture Notes in Math., vol. 1486, Springer-Verlag, Berlin and Heidelberg, 1991, pp. 227-231. MR 1178961 (93j:58073)
  • [8] -, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc. (to appear).
  • [9] -, Hausdorff and conformal measures for expanding piecewise monotonic maps of the interval, Studia Math. 103 (1992), 191-206. MR 1199325 (94f:28029)
  • [10] F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull 35 (1991), 1-15. MR 1157469 (93c:58113)
  • [11] M. Martens, W. de Melo, and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1993), 273-318. MR 1161268 (93d:58137)
  • [12] W. de Melo and S. van Strien, One-dimensional dynamics, Springer-Verlag, 1993. MR 1239171 (95a:58035)
  • [13] P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17-33. MR 1008236 (91c:58063)
  • [14] P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR 648108 (84e:28017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11, 28D05, 58F13

Retrieve articles in all journals with MSC: 58F11, 28D05, 58F13


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1232188-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society