Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal displacement of points under holomorphic mappings and fixed point properties for unions of convex sets


Authors: Tadeusz Kuczumow, Simeon Reich and Adam Stachura
Journal: Trans. Amer. Math. Soc. 343 (1994), 575-586
MSC: Primary 47H10; Secondary 32K05, 47H09
DOI: https://doi.org/10.1090/S0002-9947-1994-1242784-0
MathSciNet review: 1242784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let D be an open convex bounded subset of a complex Banach space $ (X,\left\Vert \cdot \right\Vert)$, and let C be the union of a finite number of closed convex sets lying strictly inside D. Using the Kuratowski measure of noncompactness with respect to the Kobayashi distance in D, we first show that if $ f:D \to D$ is a holomorphic mapping which leaves C invariant, and if the Lefschetz number $ \lambda ({f_{\vert C}}) \ne 0$, then $ \inf \{ \left\Vert {x - f(x)} \right\Vert:x \in C\} = 0$. We then deduce several new fixed point theorems for holomorphic and nonexpansive mappings.


References [Enhancements On Off] (What's this?)

  • [1] A. G. Aksoy and M. A. Khamsi, Nonstandard methods in fixed point theory, Springer-Verlag, New York and Berlin, 1990 MR 1066202 (91i:47073)
  • [2] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Dekker, New York, 1980. MR 591679 (82f:47066)
  • [3] L. P. Belluce, W. A. Kirk, and E.. Steiner, Normal structure in Banach spaces, Pacific J. Math. 26 (1968), 433-440. MR 0233178 (38:1501)
  • [4] M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840. MR 0024073 (9:448f)
  • [5] R. E. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141. MR 0159229 (28:2446)
  • [6] J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966. MR 0193606 (33:1824)
  • [7] C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, pp. 61-65. MR 0266009 (42:918)
  • [8] M. Edelstein, The construction of an asymptotic center with a fixed point properly, Bull. Amer. Math. Soc. 78 (1972), 206-208. MR 0291917 (45:1005)
  • [9] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, NJ, 1952. MR 0050886 (14:398b)
  • [10] T. Franzoni and E. Vesentini, Holomorphic maps and invariant distances, North-Holland, Amsterdam, 1980. MR 563329 (82a:32032)
  • [11] M. Furi and M. Martelli, A Lefschetz type theorem for the minimal displacement of points under maps defined on a class of ANR's, Boll. Un. Mat. Ital. 10 (1974), 174-181. MR 0448340 (56:6647)
  • [12] K. Goebel, Fixed points and invariant domains of holomorphic mappings of Hilbert ball, Nonlinear Anal. 6 (1982), 1327-1334. MR 684968 (84j:58027)
  • [13] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Univ. Press, Cambridge, 1990. MR 1074005 (92c:47070)
  • [14] K. Goebel and S. Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan Acad. 58 (1982), 349-352. MR 683261 (84b:47065)
  • [15] -, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Dekker, New York, 1984. MR 744194 (86d:58012)
  • [16] K. Goebel and R. Schőneberg, Moons, bridges, birds, ..., and nonexpansive mappings in Hilbert space, Bull. Austral. Math. Soc. 17 (1977), 463-466. MR 0477898 (57:17398)
  • [17] K. Goebel, T. Sçkowski, and A. Stachura, Uniform convexity of hyperbolic metric and fixed points ofholomrphic mappings in the Hilbert ball, Nonlinear Anal. 4 (1980), 1011-1021. MR 586863 (82f:32039)
  • [18] K. T. Hahn, Geometry on the unit ball of a complex Hilbert space, Canad. J. Math. 30 (1978), 22-31. MR 0477165 (57:16706)
  • [19] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy (J. A. Barosso, ed.), North-Holland, Amsterdam, 1979, pp. 345-406. MR 520667 (80j:32043)
  • [20] M. S. Khamsi, On the $ wea{k^\ast}$-fixed point property, Contemp. Math., vol. 85, Amer. Math. Soc., Providence, R.I., 1989, pp. 325-337.
  • [21] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. MR 0189009 (32:6436)
  • [22] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Dekker, New York, 1970. MR 0277770 (43:3503)
  • [23] Cl. Krauthausen, G. Müler, J. Reinermann, and R. Schöneberg, New fixed point theorems for compact and nonexpansive mappings and applications to Hammerstein equations, Sonderforschungsbereich 72 an der Universität Bonn, 1975.
  • [24] T. Kuczumow, Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of n Hilbert balls, Nonlinear Anal. 9 (1985), 601-604. MR 794829 (86j:47081)
  • [25] -, Nonexpansive mappings and isometries of Hilbert n-balls with hyperbolic metrics, Rozprawy Wydzialu Mat.-Fiz.-Chem., Rozprawy Habilt. 44, Lublin, 1987.
  • [26] -, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math. 55 (1988), 101-107. MR 964327 (90f:47088)
  • [27] T. Kuczumow and W. O. Ray, Isometries in the Cartesian product of n unit open Hilbert balls with a hyperbolic metric, Ann. Mat. Pura Appl. 152 (1988), 359-374. MR 980988 (90c:47104)
  • [28] T. Kuczumow, S. Reich, M. Schmidt, and A. Stachura, Strong asymptotic normal structure and fixed points in product spaces, preprint. MR 1241825 (94i:47089)
  • [29] T. Kuczumow and A. Stachura, Convexity and fixed points of holomorphic mappings in Hilbert ball and poly disc, Bull. Polish Acad. Sci. 34 (1986), 189-193. MR 861176 (87m:32057)
  • [30] -, Fixed points of holomorphic mappings in the Cartesian product of n unit Hilbert balls, Canad. Math. Bull. 29 (1986), 281-286. MR 846705 (88a:32031)
  • [31] -, Iterates of holomorphic and $ {k_D}$-nonexpansive mappings in convex domains in $ {{\mathbf{C}}^n}$, Adv. Math. 81 (1990), 90-98. MR 1051224 (91d:32037)
  • [32] K. Kuratowski, Sur les éspaces complets, Fund. Math. 15 (1930), 301-309.
  • [33] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 123-143. MR 722744 (86e:46014)
  • [34] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. MR 690838 (84f:32026)
  • [35] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89 (1971), 217-258. MR 0312341 (47:903)
  • [36] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. MR 0211301 (35:2183)
  • [37] J. Penot, Fixed point theorems without convexity, Bull. Soc. Math. France Mem. 60 (1979), 129-152. MR 562261 (81c:47061)
  • [38] S. Reich, Averaged mappings in the Hilbert balls, J. Math. Anal. Appl. 109 (1985), 199-206. MR 796053 (87b:47061)
  • [39] -, Nonlinear semigroups, holomorphic mappings, and integral equations, Proc. Sympos. Pure Math., vol. 45, part 2, Amer. Math. Soc., Providence, RI, 1986, pp. 307-324. MR 843617 (87j:47101)
  • [40] -, Approximating fixed points of holomorphic mappings, CAMS Report #91-4, Math. Japonica (to appear).
  • [41] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537-558. MR 1072312 (91k:47135)
  • [42] J. Reinermann and R. Schöneberg, Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert space, Fixed Point Theory and Its Applications (S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 187-196. MR 0451052 (56:9339)
  • [43] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer-Verlag, New York and Berlin, 1980. MR 601594 (82i:32002)
  • [44] I. Shafrir, Common fixed points of commuting holomorphic mappings in the product of n Hilbert balls, preprint. MR 1162037 (93e:47081)
  • [45] R. Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), 723-725. MR 1050023 (92b:47089)
  • [46] A. Stachura, Fixed points of nonexpansive mappings in the sum of two sets, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H10, 32K05, 47H09

Retrieve articles in all journals with MSC: 47H10, 32K05, 47H09


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1242784-0
Keywords: Fixed point, holomorphic mapping, Kobayashi distance, measure of noncompactness, minimal displacement, nonexpansive mapping
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society