Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal torsion in isogeny classes of elliptic curves


Author: Raymond Ross
Journal: Trans. Amer. Math. Soc. 344 (1994), 203-215
MSC: Primary 11G05; Secondary 11G07
DOI: https://doi.org/10.1090/S0002-9947-1994-1250824-8
MathSciNet review: 1250824
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a field finitely generated over its prime field, and let $ w(K)$ denote the number of roots of unity in K. If K is of characteristic 0, then there is an integer D, divisible only by those primes dividing $ w(K)$, such that for any elliptic curve $ E/K$ without complex multiplication over K, there is an elliptic curve $ E\prime/K$ isogenous to E such that $ E\prime{(K)_{{\text{tors}}}}$ is of order dividing D. In case K admits a real embedding, we show $ D = 2$, and a nonuniform result is proved in positive characteristic.


References [Enhancements On Off] (What's this?)

  • [1] B. Birch and W. Kuyk, Editors, Modular functions of one variable. IV, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975. MR 0376533 (51:12708)
  • [2] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992), 221-229. MR 1172689 (93h:11054)
  • [3] S. Kamienny and B. Mazur, Rational torsion of prime order in elliptic curves over number fields, preprint, 1992. MR 1330929 (96c:11058)
  • [4] N. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), 481-502. MR 604840 (82d:14025)
  • [5] N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Ann. of Math. Stud., no. 108, Princeton Univ. Press, Princeton, NJ, 1985. MR 772569 (86i:11024)
  • [6] S. Lang, Elliptic functions, Addison-Wesley, Reading, MA, 1973. MR 0409362 (53:13117)
  • [7] Ju. Manin, The p-torsion of elliptic curves is uniformly bounded, Izv. Akad. Nauk SSSR 33 (1969), 433-438. MR 0272786 (42:7667)
  • [8] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162. MR 482230 (80h:14022)
  • [9] A. Néron, Problèmes arithmétiques et géométriques attachés à la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France 80 (1952), 101-166. MR 0056951 (15:151a)
  • [10] J.-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, New York, 1968. MR 0263823 (41:8422)
  • [11] Yu. G. Zarhin, Abelian varieties in characteristic p, Math. Notes 19 (1976), 240-246. MR 0422287 (54:10278)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11G05, 11G07

Retrieve articles in all journals with MSC: 11G05, 11G07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1250824-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society