Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The Brown-Peterson homology of Mahowald's $ X\sb k$ spectra


Author: Dung Yung Yan
Journal: Trans. Amer. Math. Soc. 344 (1994), 261-289
MSC: Primary 55Q10
DOI: https://doi.org/10.1090/S0002-9947-1994-1272464-7
MathSciNet review: 1272464
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the Brown-Peterson homology of Mahowald's $ {X_k}$ spectrum which is the Thom spectrum induced from $ \Omega {J_{{2^k} - 1}}{S^2} \to {\Omega ^2}{S^3} - {\text{BO}}$, and the edge homomorphism of the Adams-Novikov spectral sequence for $ {\pi _\ast}({X_k})$. We then compute the nonnilpotent elements of $ {\pi _\ast}({X_k})$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55Q10

Retrieve articles in all journals with MSC: 55Q10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1272464-7
Article copyright: © Copyright 1994 American Mathematical Society