Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Inverse Stable Range Functor


Author: Robert S. Y. Young
Journal: Trans. Amer. Math. Soc. 344 (1994), 49-56
MSC: Primary 28D99
DOI: https://doi.org/10.1090/S0002-9947-94-99999-6
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an inverse construction of the stable range for general flows which may or may not admit an invariant measure. The inverse map is then shown to be a right inverse functor of the stable range functor.


References [Enhancements On Off] (What's this?)

  • [1] S. I. Bezuglyi and V. Ya. Golodets, Groups of measure space transformations and invariants of outer conjugation for automorphisms from normalizers of type III full groups, J. Funct. Anal. 60 (1985), 341-369. MR 780502 (86e:46052)
  • [2] A Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), 431-450. MR 662736 (84h:46090)
  • [3] T. Hamachi, The normalizer group of an ergodic automorphism of type III and the commutant of an ergodic flow, J. Funct. Anal. 40 (1981), 387-403. MR 611590 (82m:46070)
  • [4] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci., no. 3, Keio Univ., Keio, Japan, 1981. MR 617740 (84d:46099)
  • [5] J. Hawkins, Non-ITPFI diffeomorphisms, Israel J. Math. 42 (1982), 117-131. MR 687939 (84k:58129)
  • [6] W. Krieger, On nonsingular transformations of a measure space. I, Z. Wahrsch. Verw. Gebiete 11 (1969), 83-97. MR 0240279 (39:1628)
  • [7] -, On nonsingular transformations of a measure space. II, Z. Wahrsch. Verw. Gebiete 11 (1969), 98-119. MR 0240279 (39:1628)
  • [8] G. W. Mackey, Point realizations of transformation groups. III, J. Math. 6 (1962), 327-335. MR 0143874 (26:1424)
  • [9] C. E. Sutherland, Notes on orbit equivalence, Krieger's theorem, Lecture Notes Ser., no. 23, Univ. of Oslo, 1976.
  • [10] V. S. Varadarajan, Geometry of quantum theory, vol. II, Van Nostrand, Princeton, N. J., 1970. MR 0471675 (57:11400)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D99

Retrieve articles in all journals with MSC: 28D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-94-99999-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society