Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Densely defined selections of multivalued mappings


Authors: M. M. Čoban, P. S. Kenderov and J. P. Revalski
Journal: Trans. Amer. Math. Soc. 344 (1994), 533-552
MSC: Primary 54C65; Secondary 46G99, 47H04, 49J40, 54C60
DOI: https://doi.org/10.1090/S0002-9947-1994-1154539-6
MathSciNet review: 1154539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Rather general suficient conditions are found for a given multivalued mapping $ F:X \to Y$ to possess an upper semicontinuous and compact-valued selection G which is defined on a dense $ {G_\delta }$-subset of the domain of F. The case when the selection G is single-valued (and continuous) is also investigated. The results are applied to prove some known as well as new results concerning generic differentiability of convex functions, Lavrentieff type theorem, generic well-posedness of optimization problems and generic non-multivaluedness of metric projections and antiprojections.


References [Enhancements On Off] (What's this?)

  • [AL] J. M. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 1-48. MR 0380745 (52:1642)
  • [As] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. MR 0231199 (37:6754)
  • [BPh] E. Bishop and R. R. Phelps, A proof that every Banach spaces is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. MR 0123174 (23:A503)
  • [BLL] D. Burke, D. Lutzer and S. Levi, Functional characterization of certain p-spaces, Topology Appl. 20 (1985), 161-165. MR 800846 (87a:54039)
  • [CČN] J. Chaber, M. M. Čoban, and K. Nagami, On monotonic generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119. MR 0343244 (49:7988)
  • [Chr] J. P. R. Christensen, Theorems of I. Namioka and R. E. Jonson type for upper semi-continuous and compact-valued set-valued maps, Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 674099 (83k:54014)
  • [ChrK] J. P. R. Christensen and P. S. Kenderov, Dense strong continuity of mappings and the Radon-Nikodym property, Math. Scand. 54 (1984), 70-78. MR 753064 (85k:46015)
  • [ČK1] M. M. Čoban and P. S. Kenderov, Dense Gâteaux differentiability of the sup-norm in $ C(T)$ and the topological properties of T, C. R. Acad. Bulgare. Sci. 38 (1985), 1603-1604. MR 837262 (87h:46070)
  • [ČK2] -, Generic Gâteaux differentiability of convex functionals in $ C(T)$ and the topological properties of T, Math., and Education in Math., Proc. 15th Spring Conf. of the Union of Bulgare Math., 1986, pp. 141-149. MR 872913 (88d:46037)
  • [ČKR1] M. M. Čoban, P. S. Kenderov and J. P. Revalski, Generic well-posedness of optimization problems in topological spaces, C. R. Acad. Bulgare Sci. 42 (1989), 11-14. MR 991452 (90j:90149)
  • [ČKR2] -, Generic well-posedness of optimization problems in topological spaces, Mathematika 36 (1989), 301-324. MR 1045790 (91c:90119)
  • [DK] F. Deutsch and P. S. Kenderov, Continuous selections and approximate selection for set-valued mappings and applications to metric projections, SIAM J. Math. Anal. 14 (1983), 185-194. MR 686245 (84c:54026)
  • [En] R. Engelking, General topology, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [FaZh] M. Fabian and N. V. Zhivkov, A characterization of Asplund spaces with the help of local $ \varepsilon $-supports of Ekeland and Lebourg, C. R. Acad. Bulgare. Sci. 38 (1985), 671-674. MR 805439 (87e:46021)
  • [Fro] Z. Frolík, Generalizations of the $ {G_\delta }$-property of complete metric spaces, Czechoslovak. Math. J. 10 (1960), 359-379. MR 0116305 (22:7100)
  • [FV] M. Furi and A. Vignoli, About well-posed minimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 (1970), 225-290.
  • [HJT] R. W. Hansell, J. E. Jayne and M. Talagrand, First class selector for weakly upper semi-continuous multivalued maps in Banach spaces, J. Reine Angew. Math. 361 (1985), 201-220. MR 807260 (87m:54059a)
  • [HS] H. Herrlich and C. E. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177 (1968), 302-309. MR 0234427 (38:2744)
  • [JR] J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79. MR 793237 (87a:28011)
  • [K1] P. S. Kenderov, Dense strong continuity of pointwise continuous mappings, Pacific J. Math. 88 (1980), 111-130. MR 596921 (82d:46034)
  • [K2] -, Continuity-like properties of multivalued mappings, Serdica 9 (1983), 149-160. MR 731839 (85j:54021)
  • [KG] P. S. Kenderov and J. R. Giles, On the structure of Banach spaces with Mazur's intersection property, Math. Ann. 291 (1991), 463-473. MR 1133343 (92j:46026)
  • [Ko1] S. V. Konyagin, Approximative properties of subsets in Banach spaces, Dokl. Akad. Nauk SSSR 239 (1978), 261-264.
  • [Ko2] -, Approximative properties of closed subsets in Banach spaces and characterizations of strongly convex spaces, Dokl. Akad. Nauk SSSR 251 (1980), 276-279. MR 565493 (81b:46022)
  • [L] Ka-S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), 791-795. MR 0510772 (58:23286)
  • [Ma] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
  • [M1] E. Michael, Continuous selections I. Ann. of Math. (2) 63 (1956), 562-590. MR 0077107 (17:990e)
  • [M2] -, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647-652. MR 0109343 (22:229)
  • [M3] -, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733. MR 0467688 (57:7543)
  • [M4] -, Almost complete spaces, hypercomplete spaces and related mapping theorems, Topology Appl. 41 (1991), 113-130. MR 1129701 (92h:54032)
  • [Na] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [PaKa] B. B. Panda and O. P. Kapoor, On farthest points of sets, J. Math. Anal. Appl. 62 (1978), 345-353. MR 0473794 (57:13455)
  • [Pas] B. A. Pasynkov, Zero-dimensional open mappings raising the dimension, Uspehi Mat. Nauk 18 (1963), 183-190. (Russian) MR 0156320 (27:6244)
  • [Ph] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., vol. 1364, Springer-Verlag, Berlin, 1989. MR 984602 (90g:46063)
  • [Ri] N. Ribarska, The dual of a Gâteaux smooth Banach space is weak star fragmentable, Proc. Amer. Math. Soc. (to appear). MR 1101992 (92g:46020)
  • [Ro] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111. MR 0417762 (54:5810)
  • [St] S. B. Stečkin, Approximative properties of Banach spaces subsets, Rev. Roumaine Math. Pures Appl. 8 (1963), 5-8.
  • [S] C. Stegall, Topological spaces with dense subspaces that are homeomorphic to complete metric spaces and the classification of $ C(K)$ Banach spaces, Mathematika 34 (1987), 101-107. MR 908845 (88i:46038)
  • [T] A. N. Tikhonov, On the stability of the functional optimization problem, U.S.S.R. Comput. Math. and Math. Phys. 6 (1966), 631-634. MR 0198308 (33:6467)
  • [Za] L. Zajčik, On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolin. 19 (1978), 513-523. MR 508958 (80b:41010)
  • [Zh] N. V. Zhivkov, Continuity and non-multivaluedness properties of metric projections and antiprojections, Serdica 8 (1982), 378-385. MR 694960 (84d:41065)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54C65, 46G99, 47H04, 49J40, 54C60

Retrieve articles in all journals with MSC: 54C65, 46G99, 47H04, 49J40, 54C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1154539-6
Keywords: Multivalued mappings, selections, semicontinuity, generic continuity, Baire category
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society