Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The algorithmic theory of finitely generated metabelian groups


Authors: Gilbert Baumslag, Frank B. Cannonito and Derek J. S. Robinson
Journal: Trans. Amer. Math. Soc. 344 (1994), 629-648
MSC: Primary 20F10; Secondary 13L05
DOI: https://doi.org/10.1090/S0002-9947-1994-1202419-X
MathSciNet review: 1202419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Algorithms are constructed which, when an explicit presentation of a finitely generated metabelian group G in the variety $ {\mathcal{A}^2}$ is given, produce finitary presentations for the derived subgroup $ G\prime $, the centre $ Z(G)$, the Fitting subgroup $ \operatorname{Fit}(G)$, and the Frattini subgroup $ \varphi (G)$. Additional algorithms of independent interest are developed for commutative algebra which construct the associated set of primes $ \operatorname{Ass}(M)$ of a finitely generated module M over a finitely generated commutative ring R, and the intersection $ {\varphi _R}(M)$ of the maximal submodules of M.


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, F. B. Cannonito, and C. F. Miller III, Infinitely generated subgroups of finitely presented groups. II, Math. Z. 172 (1980), 97-105. MR 580852 (82f:20058)
  • [2] -, Computable algebra and group embeddings, J. Algebra 69 (1981), 186-212. MR 613868 (82e:20042)
  • [3] G. Baumslag, F. B. Cannonito, D. J. S. Robinson, and D. Segal, The algorithmic theory of polycyclic-by-finite groups, J. Algebra 141 (1991), 118-149. MR 1125209 (92i:20036)
  • [4] G. Baumslag, D. Gildenhuys, and R. Strebel, Algorithmically insoluble problems about finitely presented solvable groups, Lie and associative algebras. I, II, J. Pure Appl. Algebra 39 (1986), 53-94; J. Algebra 97 (1985), 278-285. MR 816890 (88a:20046)
  • [5] G. Baumslag, U. Stammbach, and R. Strebel, The free metabelian group of rank 2 contains continuously many non-isomorphic subgroups, Proc. Amer. Math. Soc. 104 (1988), 702. MR 941322 (89e:20066)
  • [6] N. Bourbaki, Commutative algebra, Springer, Berlin, 1989.
  • [7] P. Gianni, B. Trager, and G. Zacharias, Grobner bases and primary decomposition of polynomial ideals, J. Symbolic Comput. 6 (1988), 149-167. MR 988410 (90f:68091)
  • [8] P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419-436. MR 0072873 (17:344c)
  • [9] O. G. Harlampovič, A finitely presented soluble group with insoluble word problem, Izv. Akad. Nauk Ser. Math. 45 (1981), 852-873. MR 631441 (82m:20036)
  • [10] M. F. Newman, On a class of metabelian groups, Proc. London Math. Soc. (3) 10 (1960), 354-364. MR 0117293 (22:8074)
  • [11] G. A. Noskov, On conjugacy in metabelian groups, Mat. Zametki 31 (1982), 495-507. MR 657712 (83i:20029)
  • [12] D. J. S. Robinson, Splitting theorems for infinite groups, Symposia Math. 17 (1976), 441-470. MR 0407153 (53:10936)
  • [13] -, A course in the theory of groups, Springer, New York, 1982. MR 648604 (84k:20001)
  • [14] N. S. Romanovskiĭ, The occurrence problem for extensions of abelian groups by nilpoten groups, Sibirsk. Mat. Ž. 21 (1980), 170-174.
  • [15] D. Segal, Decidable properties of poly cyclic groups, Proc. London Math. Soc. (3) 61 (1990), 497-528. MR 1069513 (91h:20050)
  • [16] A. Seidenberg, Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974), 273-313. MR 0349648 (50:2141)
  • [17] -, Constructions in a polynomial ring over the ring of integers, Amer. J. Math. 100 (1978), 685-703. MR 509069 (81g:13016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F10, 13L05

Retrieve articles in all journals with MSC: 20F10, 13L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1202419-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society