Measures of chaos and a spectral decomposition of dynamical systems on the interval

Authors:
B. Schweizer and J. Smítal

Journal:
Trans. Amer. Math. Soc. **344** (1994), 737-754

MSC:
Primary 58F13; Secondary 54H20, 58F08

DOI:
https://doi.org/10.1090/S0002-9947-1994-1227094-X

MathSciNet review:
1227094

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be continuous. For , the upper and lower (distance) distribution functions, and , are defined for any as the lim sup and lim inf as of the average number of times that the distance between the trajectories of *x* and *y* is less than *t* during the first *n* iterations. The spectrum of *f* is the system of lower distribution functions which is characterized by the following properties: (1) The elements of are mutually incomparable; (2) for any , there is a perfect set such that and for any distinct *u*, ; (3) if *S* is a scrambled set for *f*, then there are *F*, *G* in and a decomposition ( may be empty) such that if *u*, and if *u*, . Our principal results are: (1) If *f* has positive topological entropy, then is nonempty and finite, and any is zero on an interval , where (and hence any is a scrambled set in the sense of Li and Yorke). (2) If *f* has zero topological entropy, then where .

It follows that the spectrum of *f* provides a measure of the degree of chaos of *f*. In addition, a useful numerical measure is the largest of the numbers , where .

**[1]**L. S. Block and W. A. Coppel,*One-dimensional dynamics*, Lecture Notes in Math., vol. 1513, Springer-Verlag, Berlin, 1992. MR**1176513 (93g:58091)****[2]**R. Bowen,*Topological entropy and Axiom A*, Global Analysis, Proc. Sympos. Pure Math., vol. 14, Providence, R.I., 1970, pp. 23-41. MR**0262459 (41:7066)****[3]**P. Collet and J.-P. Eckmann,*Iterated maps on the interval as dynamical systems*, Birkhäuser, Boston, Mass, 1980. MR**2541754****[4]**V. V. Fedorenko, A. N. Sharkovsky, and J. Smítal,*Characterizations of weakly chaotic maps of the interval*, Proc. Amer. Math. Soc.**110**(1990), 141-148. MR**1017846 (91a:58148)****[5]**N. Franzová and J. Smítal,*Positive sequence topological entropy characterizes chaos*, Proc. Amer. Math. Soc.**112**(1991), 1083-1086. MR**1062387 (91j:58107)****[6]**Ch. K. Kenzhegulov and A. N. Sharkovsky,*On properties of the set of limit points of an iterated sequence of a continuous function*, Volž. Mat. Sb.**3**(1965), 343-348. (Russian) MR**0199316 (33:7464)****[7]**M. Kuchta and J. Smítal,*Two point scrambled set implies chaos*, Proc. Europ. Conf. on Iteration Theory, Spain 1987, World Science, Singapore, 1989, pp. 427-430. MR**1085314 (91j:58112)****[8]**C. Kuratowski,*Topologie*, Vol. I, Polish Sci. Publ., Warsaw, 1958. MR**0090795 (19:873d)****[9]**T. Y. Li and J. A. Yorke,*Period three implies chaos*, Amer. Math. Monthly**82**(1975), 985-992. MR**0385028 (52:5898)****[10]**M. Misiurewicz,*Horseshoes for mappings of the interval*, Bull. Acad. Polon. Sci. Sér. Math.**27**(1979), 167-169. MR**542778 (81b:58033)****[11]**M. Misiurewicz and J. Smítal,*Smooth chaotic maps with zero topological entropy*, Ergodic Theory and Dynamical Systems**8**(1988), 421-424. MR**961740 (90a:58118)****[12]**Z. Nitecki,*Topological dynamics on the interval*, Ergodic Theory and Dynamical Systems. II, Proceedings (A. Katok, ed.), Birkhäuser, Boston, Mass, 1982, pp. 1-73. MR**670074 (84g:54051)****[13]**D. Preiss and J. Smítal,*A characterization of non-chaotic maps of the interval stable under small perturbations*, Trans. Amer. Math. Soc.**313**(1989), 687-696. MR**997677 (90f:58100)****[14]**C. Preston,*Iterates of piecewise monotone mappings on an interval*, Lecture Notes in Math., vol. 1347, Springer-Verlag, Berlin, 1988. MR**969131 (89m:58109)****[15]**A. N. Sharkovsky,*The partially ordered system of attracting sets*, Soviet Math. Dokl.**7**(1966), 1384-1386.**[16]**-,*The behavior of a map in a neighborhood of an attracting set*, Ukrain. Mat. Ž.**18**(1966), 60--83. (Russian)**[17]**-,*Continuous mapping on the set of*-*limit sets of iterated sequences*, Ukrain. Mat. Ž.**18**(1966), 127-130. (Russian)**[18]**B. Schweizer and A. Sklar,*Probabilistic metric spaces*, North-Holland, New York, 1983. MR**790314 (86g:54045)****[19]**J. Smítal,*Chaotic functions with zero topological entropy*, Trans. Amer. Math. Soc.**297**(1986), 269-281. MR**849479 (87m:58107)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F13,
54H20,
58F08

Retrieve articles in all journals with MSC: 58F13, 54H20, 58F08

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1227094-X

Article copyright:
© Copyright 1994
American Mathematical Society