Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The dynamics of continuous maps of finite graphs through inverse limits

Authors: Marcy Barge and Beverly Diamond
Journal: Trans. Amer. Math. Soc. 344 (1994), 773-790
MSC: Primary 58F03; Secondary 54H20, 58F13
MathSciNet review: 1236222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ f:G \to G$ is a continuous piecewise monotone function on a finite graph G. Then the following are equivalent:

(i) f has positive topological entropy;

(ii) there are disjoint intervals $ {I_1}$, and $ {I_2}$ and a positive integer n with

$\displaystyle {I_1} \cup {I_2} \subseteq {f^n}({I_1}) \cap {f^n}({I_2});$

(iii) the inverse limit space constructed by using f on G as a single bonding map contains an indecomposable subcontinuum.

This result generalizes known results for the interval and circle.

References [Enhancements On Off] (What's this?)

  • [AKM] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 0175106 (30:5291)
  • [Ba] M. Barge, The topological entropy of homeomorphisms of Knaster continua, Houston J. Math. 13 (1987), 465-485. MR 929286 (89c:54077)
  • [BM$ _{1}$] M. Barge and J. Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), 355-364. MR 779069 (86h:58079)
  • [BM$ _{2}$] -, The construction of global attractors, Proc. Amer. Math. Soc. 110 (1990), 523-525. MR 1023342 (90m:58123)
  • [BR] M. Barge and R. Roe, Circle maps and inverse limits, Topology Appl. 36 (1990), 19-26. MR 1062181 (91f:58071)
  • [Bl] A. M. Blokh, On some properties of graph maps: Spectral decomposition, Misiurewicz conjecture and abstract sets of periods, preprint.
  • [Bo] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-510. MR 0274707 (43:469)
  • [Go] L. W. Goodwyn, Axioms for topological entropy, preprint, 1974.
  • [He] G. W. Henderson, The pseudo-arc as an inverse limit with one binding map, Duke Math. J. 31 (1964), 421-425. MR 0166766 (29:4039)
  • [Hy] J. Hocking and G. Young, Topology, Dover, 1961. MR 1016814 (90h:54001)
  • [Ku] D. P. Kuykendall, Irreducibility and indecomposability in inverse limits, Fund. Math. 80 (1973), 265-270. MR 0326684 (48:5027)
  • [LM] J. Llibre and M. Misiurewicz, Excess of gods implies chaos, preprint.
  • [Mi] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Math. 27 (1979), 167-169. MR 542778 (81b:58033)
  • [Ro] R. Roe, Monotone decompositions of inverse limit spaces based on finite graphs, Topology Appl. 34 (1990), 235-245. MR 1042281 (91b:54065)
  • [Wi] R. Williams, One-dimensional nonwandering sets, Topology 6 (1967), 473-487. MR 0217808 (36:897)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F03, 54H20, 58F13

Retrieve articles in all journals with MSC: 58F03, 54H20, 58F13

Additional Information

Keywords: Inverse limit, indecomposable continuum, finite graph, topological entropy, horseshoe
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society