Amenable actions of groups

Authors:
Scot Adams, George A. Elliott and Thierry Giordano

Journal:
Trans. Amer. Math. Soc. **344** (1994), 803-822

MSC:
Primary 22D99; Secondary 22D40, 28D15

DOI:
https://doi.org/10.1090/S0002-9947-1994-1250814-5

MathSciNet review:
1250814

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The equivalence between different characterizations of amenable actions of a locally compact group is proved. In particular, this answers a question raised by R. J. Zimmer in 1977.

**[A]**W. Arveson,*Invitation to*-*algebras*, Springer-Verlag, Berlin, 1976. MR**0512360 (58:23621)****[AS]**S. Adams and G. Stuck,*Splitting of non-negatively curved leaves in minimal sets of foliations*, Duke Math. J.**71**(1993), 71-92. MR**1230286 (95e:53045)****[C]**A. Connes,*On hyperfinite factors of type**and Krieger's factors*, J. Funct. Anal.**18**(1975), 318-327. MR**0372635 (51:8842)****[CFW]**A. Connes, J. Feldman and B. Weiss,*An amenable equivalence relation is generated by a single transformation*, Ergodic Theory Dynamical Systems**1**(1981), 431-450. MR**662736 (84h:46090)****[CW]**A. Connes and E. J. Woods,*Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks*, Pacific J. Math.**137**(1989), 225-243. MR**990212 (90h:46100)****[EG1]**G. A. Elliott and T. Giordano,*Amenable actions of discrete groups*, Ergodic Theory Dynamical Systems (to appear). MR**1235474 (94i:22023)****[FHM]**J. Feldman, P. Hahn and C. Moore,*Orbit structure and countable sections for actions of continuous groups*, Adv. in Math.**28**(1978), 186-230. MR**0492061 (58:11217)****[FM]**J. Feldman and C.C. Moore,*Ergodic equivalence relations, cohomology and von Neumann algebras*I, Trans. Amer. Math. Soc.**234**(1977), 289-324. MR**0578656 (58:28261a)****[F]**H. Furstenberg,*Recurrence in ergodic theory and combinatorial number theory*, Princeton University Press, Princeton, NJ, 1981. MR**603625 (82j:28010)****[GS]**V.Ya. Golodets and S.D. Sinel'shchikov,*Amenable ergodic group actions and images of cocycles*, Dokl. Akad. Nauk SSSR**312**(1990), 1296-1299; transl. in Soviet Math. Dokl.**41**(1990), 523-526. MR**1076484 (92c:22014)****[GS1]**-,*Outer conjugacy for actions of continuous amenable groups*, Publ. Inst. Res. Math Sci.**23**(1987), 737-769. MR**934670 (89c:46087)****[GS2]**-,*Classification and the structure of cocycles of amenable ergodic equivalence relations*, preprint.**[J]**W. Jaworski,*Poisson and Furstenberg boundaries of random walks*, Ph.D. thesis, Queen's, University at Kingston, 1991. MR**1145123****[Ka]**R. Kallman,*Certain quotient spaces are countably separated*, III, J. Funct. Anal.**22**(1976), 225-241. MR**0417329 (54:5385)****[Ke]**A. Kechris,*Countable sections for locally compact group actions*, preprint. MR**1176624 (94b:22003)****[M]**G. Mackey,*Point realizations of transformations groups*, Illinois J. Math**6**(1962), 327-335. MR**0143874 (26:1424)****[S]**C.E. Sutherland,*Preliminary report on Bratteli diagrams*, private communication.**[V]**V.S. Varadarajan,*Geometry of quantum theory*, 2nd ed., Springer-Verlag, Berlin, 1985. MR**805158 (87a:81009)****[Z1]**R.J. Zimmer,*Amenable ergodic group actions and an application to Poisson boundaries of random walks*, J. Funct. Anal.**27**(1978), 350-372. MR**0473096 (57:12775)****[Z2]**-,*Hyperfinite factors and amenable ergodic actions*, Invent. Math.**41**(1977), 23-31. MR**0470692 (57:10438)****[Z3]**-,*On the von Neumann algebra of an ergodic group action*, Proc. Amer. Math. Soc.**41**(1977), 23-31. MR**0460599 (57:592)****[Z4]**-,*Ergodic theory and semisimple groups*, Birkhäuser, Boston, MA, 1984.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22D99,
22D40,
28D15

Retrieve articles in all journals with MSC: 22D99, 22D40, 28D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1250814-5

Article copyright:
© Copyright 1994
American Mathematical Society