The Jacobson radical of a CSL algebra

Authors:
Kenneth R. Davidson and John Lindsay Orr

Journal:
Trans. Amer. Math. Soc. **344** (1994), 925-947

MSC:
Primary 47D25

MathSciNet review:
1250816

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Extrapolating from Ringrose's characterization of the Jacobson radical of a nest algebra, Hopenwasser conjectured that the radical of a CSL algebra coincides with the Ringrose ideal (the closure of the union of zero diagonal elements with respect to finite sublattices). A general interpolation theorem is proved that reduces this conjecture for completely distributive lattices to a strictly combinatorial problem. This problem is solved for all width two lattices (with no restriction of complete distributivity), verifying the conjecture in this case.

**[1]**Constantin Apostol and Kenneth R. Davidson,*Isomorphisms modulo the compact operators of nest algebras. II*, Duke Math. J.**56**(1988), no. 1, 101–127. MR**932858**, 10.1215/S0012-7094-88-05605-0**[2]**William Arveson,*Operator algebras and invariant subspaces*, Ann. of Math. (2)**100**(1974), 433–532. MR**0365167****[3]**Kenneth R. Davidson,*Nest algebras*, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR**972978****[4]**Kenneth R. Davidson,*Problems about reflexive algebras*, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 317–330. MR**1065832**, 10.1216/rmjm/1181073109**[5]**Kenneth R. Davidson and David R. Pitts,*Compactness and complete distributivity for commutative subspace lattices*, J. London Math. Soc. (2)**42**(1990), no. 1, 147–159. MR**1078182**, 10.1112/jlms/s2-42.1.147**[6]**Alan Hopenwasser,*The radical of a reflexive operator algebra*, Pacific J. Math.**65**(1976), no. 2, 375–392. MR**0440383****[7]**-,*The equation*in a reflexive operator algebra, Indiana Univ. Math. J.**29**(1980), 124-126.**[8]**Alan Hopenwasser and David Larson,*The carrier space of a reflexive operator algebra*, Pacific J. Math.**81**(1979), no. 2, 417–434. MR**547609****[9]**J. R. Ringrose,*On some algebras of operators*, Proc. London Math. Soc. (3)**15**(1965), 61–83. MR**0171174****[10]**Bruce H. Wagner,*Weak limits of projections and compactness of subspace lattices*, Trans. Amer. Math. Soc.**304**(1987), no. 2, 515–535. MR**911083**, 10.1090/S0002-9947-1987-0911083-2

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47D25

Retrieve articles in all journals with MSC: 47D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1250816-9

Article copyright:
© Copyright 1994
American Mathematical Society