Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Théorème de Ney-Spitzer sur le dual de $ {\rm SU}(2)$


Author: Philippe Biane
Journal: Trans. Amer. Math. Soc. 345 (1994), 179-194
MSC: Primary 60J50; Secondary 22E99, 47G30, 60B15, 81S25
MathSciNet review: 1225572
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be a central, noneven, positive type function on $ {\text{SU}}(2)$ with $ \phi (e) < 1$. For any polynomial function p on $ {\text{SU}}(2)$, let $ V(p)$ be the left convolution operator by $ p/(1 - \phi )$ on $ {L^2}({\text{SU}}(2))$, we prove that $ V(p)/V(1)$ is a pseudodifferential operator of order 0 and give an explicit formula for its principal symbol. This is interpreted in terms of Martin compactification of a quantum random walk.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J50, 22E99, 47G30, 60B15, 81S25

Retrieve articles in all journals with MSC: 60J50, 22E99, 47G30, 60B15, 81S25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1994-1225572-0
PII: S 0002-9947(1994)1225572-0
Article copyright: © Copyright 1994 American Mathematical Society