Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Théorème de Ney-Spitzer sur le dual de $ {\rm SU}(2)$


Author: Philippe Biane
Journal: Trans. Amer. Math. Soc. 345 (1994), 179-194
MSC: Primary 60J50; Secondary 22E99, 47G30, 60B15, 81S25
DOI: https://doi.org/10.1090/S0002-9947-1994-1225572-0
MathSciNet review: 1225572
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be a central, noneven, positive type function on $ {\text{SU}}(2)$ with $ \phi (e) < 1$. For any polynomial function p on $ {\text{SU}}(2)$, let $ V(p)$ be the left convolution operator by $ p/(1 - \phi )$ on $ {L^2}({\text{SU}}(2))$, we prove that $ V(p)/V(1)$ is a pseudodifferential operator of order 0 and give an explicit formula for its principal symbol. This is interpreted in terms of Martin compactification of a quantum random walk.


References [Enhancements On Off] (What's this?)

  • [B1] Ph. Biane, Quantum random walk on the dual of $ {\text{SU}}(n)$, Probab. Theory Related Fields 89 (1991), 117-129. MR 1109477 (93a:46119)
  • [B2] -, Minuscule weights and random walks on lattices, Quantum Probability and Related Topics, Vol. VII, 1992, pp. 51-65. MR 1186654 (94c:46129)
  • [B3] -, Equation de Choquet-Deny sur le dual d'un groupe compact, Probab. Theory Related Fields 94 (1992), 39-52. MR 1189084 (94a:46091)
  • [B-tD] T. Bröcker and T. torn Dieck, Representation of compact Lie groups, Graduate Texts in Math., vol. 98, Springer-Verlag, Berlin and New York, 1985. MR 781344 (86i:22023)
  • [C] A. Connes, Géométrie non-commutative, Interéditions, Paris, 1990.
  • [De] J. Deny, Sur l'équation de convolution $ \mu = \mu \ast \sigma $, Séminaire de théorie du potentiel, 4$ ^e$ année 1959-1960, n$ ^\circ$ 5.
  • [Di] J. Dixmier, Les $ {C^\ast}$-algebres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 0171173 (30:1404)
  • [K] A. W. Knapp, Representation theory of semi-simple Lie groups, Princeton Math. Ser., no. 36, Princeton, NJ, 1986.
  • [K-S-K] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov chains, Graduate Texts in Math., vol. 40, Springer-Verlag, Berlin and New York, 1976. MR 0407981 (53:11748)
  • [N-S] P. Ney and F. Spitzer, The Martin boundary of random walk, Trans. Amer. Math. Soc. 121 (1966), 115-132. MR 0195151 (33:3354)
  • [P] K. R. Parthasarathy, A generalized Biane's process, Sém. Probab. XXIV, Lecture Notes in Math., vol. 851, Springer-Verlag, Berlin and New York, 1991. MR 1187798 (93i:81113)
  • [Ped] G. K. Pedersen, $ {C^\ast}$-algebras and their automorphism groups, Academic Press, San Diego, 1979. MR 548006 (81e:46037)
  • [V] N. J. Vilenkin, Special functions and the theory of group representations, Transl. Math. Mono., vol. 22, Amer. Math. Soc., Providence, RI, 1968. MR 0229863 (37:5429)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J50, 22E99, 47G30, 60B15, 81S25

Retrieve articles in all journals with MSC: 60J50, 22E99, 47G30, 60B15, 81S25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1225572-0
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society