A homotopy invariance theorem in coarse cohomology and -theory

Authors:
Nigel Higson and John Roe

Journal:
Trans. Amer. Math. Soc. **345** (1994), 347-365

MSC:
Primary 19K56; Secondary 46L80, 55N99, 58G12

MathSciNet review:
1243611

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of homotopy which is appropriate to the coarse geometry and topology studied by the second author in [7]. We prove the homotopy invariance of coarse cohomology, and of the *K*-theory of the -algebra associated to a coarse structure on a space. We apply our homotopy invariance results to show that if *M* is a Hadamard manifold then the inverse of the exponential map at any point 0 induces an isomorphism between the *K*-theory groups of the -algebras associated to *M* and its tangent space at 0 (see Theorem 7.9). This result is consistent with a coarse version of the Baum-Connes conjecture.

**[1]**Jeff Cheeger and David G. Ebin,*Comparison theorems in Riemannian geometry*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR**0458335****[2]**A. Connes,*Non-commutative differential geometry*, Publ. Math. IHES**62**(1985), 41-144.**[3]**Nigel Higson, John Roe, and Guoliang Yu,*A coarse Mayer-Vietoris principle*, Math. Proc. Cambridge Philos. Soc.**114**(1993), no. 1, 85–97. MR**1219916**, 10.1017/S0305004100071425**[4]**N. Higson and J. Roe,*The coarse Baum-Connes conjecture*.**[5]**G. G. Kasparov,*Topological invariants of elliptic operators. I. 𝐾-homology*, Izv. Akad. Nauk SSSR Ser. Mat.**39**(1975), no. 4, 796–838 (Russian); Russian transl., Math. USSR-Izv.**9**(1975), no. 4, 751–792 (1976). MR**0488027****[6]**Gert K. Pedersen,*𝐶*-algebras and their automorphism groups*, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR**548006****[7]**John Roe,*Coarse cohomology and index theory on complete Riemannian manifolds*, Mem. Amer. Math. Soc.**104**(1993), no. 497, x+90. MR**1147350**, 10.1090/memo/0497**[8]**John Roe,*Hyperbolic metric spaces and the exotic cohomology Novikov conjecture*, 𝐾-Theory**4**(1990/91), no. 6, 501–512. MR**1123175**, 10.1007/BF00538881

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
19K56,
46L80,
55N99,
58G12

Retrieve articles in all journals with MSC: 19K56, 46L80, 55N99, 58G12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1243611-8

Article copyright:
© Copyright 1994
American Mathematical Society