Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The spectra of random pseudo-differential operators


Author: Jingbo Xia
Journal: Trans. Amer. Math. Soc. 345 (1994), 381-411
MSC: Primary 47G30; Secondary 35R60, 35S99, 46L99
DOI: https://doi.org/10.1090/S0002-9947-1994-1250828-5
MathSciNet review: 1250828
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the spectra of random pseudo-differential operators generated by the same symbol function on different $ {L^2}$-spaces. Our results generalize the spectral coincidence theorem of S. Kozlov and M. Shubin (Math. USSRSb. 51 (1985), 455-471) for elliptic operators of positive order associated with ergodic systems. Because of our new approach, we are able to treat operators of arbitrary order and associated with arbitrary dynamical systems. Furthermore, we characterize the spectra of these operators in terms of certain naturally obtained Borel measures on R.


References [Enhancements On Off] (What's this?)

  • [1] W. Arveson, On the group of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243. MR 0348518 (50:1016)
  • [2] R. Biktashev and A. Mishchenko, Spectra of elliptic unbounded pseudodifferential operators over $ {C^\infty }$-algebras, Moscow Univ. Math. Bull. 35 (1980), 59-62.
  • [3] M. Burnat, Die Spektraldarstellung einiger Differentialoperatoren mit periodischen Koeffizienten im Raume der fastperiodischen Funktionen, Studia Math. 25 (1964/65), 33-64. MR 0181791 (31:6018)
  • [4] L. Coburn, R. Douglas, D. Shaeffer, and I. Singer, On the $ {C^\ast}$-algebras of operators on a half-space. II, Index theory, Inst. Haute Études Sci. Publ. Math. 40 (1971), 69-79. MR 0358418 (50:10884)
  • [5] L. Coburn, R. Moyer, and I. Singer, $ {C^\ast}$-algebras of almost periodic pseudo-differential operators, Acta Math. 130 (1973), 279-307. MR 0415407 (54:3495)
  • [6] P. Dedik and M. Shubin, Random pseudo-differential operators and the stabilization of solutions of parabolic equations with random coefficients, Math. USSR-Sb. 41 (1982), 33-52.
  • [7] R. Douglas, On the $ {C^\ast}$-algebra of a one-parameter semi-group of isometries, Acta Math. 128 (1972), 143-151. MR 0394296 (52:15099)
  • [8] F. Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-59. MR 0209771 (35:667)
  • [9] J. Kaminker and J. Xia, The spectrum of operators elliptic along orbits of $ {{\mathbf{R}}^n}$ actions, Comm. Math. Phys. 110 (1987), 427-438. MR 891946 (89b:58220)
  • [10] S. Kozlov and M. Shubin, On the coincidence of the spectra of random elliptic operators, Math. USSR-Sb. 51 (1985), 455-471. MR 740673 (85i:35149)
  • [11] R. Loebl and P. Muhly, Analyticity and flows on von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252. MR 504460 (81h:46080)
  • [12] P. Muhly, I. Putnam, and J. Xia, On the K-theory of some $ {C^\ast}$-algebras of Toeplitz and singular integral operators, J. Funct. Anal. 110 (1992), 161-225. MR 1190423 (93m:46088)
  • [13] P. Muhly and J. Xia, $ {C^\ast}$-algebras of singular integral operators and Toeplitz operators associated with n-dimensional flows, Internat. J. Math. 4 (1992), 525-579. MR 1168360 (93f:46102)
  • [14] A. Pankov, On the theory of almost periodic pseudo-differential operators, Ukrainian Math. J. 33 (1981), 469-472. MR 633733 (83a:47056)
  • [15] M. Shubin, The essential self-adjointness of uniformly hypoelliptic operators, Moscow Univ. Math. Bull. 30 (1975), 147-150.
  • [16] -, Theorems on the coincidence of the spectra of a pseudo-differential operator in the spaces $ {L^2}({{\mathbf{R}}^n})$ and $ {B^2}({{\mathbf{R}}^n})$, Siberian Math. J. 17 (1976), 158-170.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47G30, 35R60, 35S99, 46L99

Retrieve articles in all journals with MSC: 47G30, 35R60, 35S99, 46L99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1250828-5
Keywords: Pseudo-differential operator, spectrum, dynamical system
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society