Analysis and applications of holomorphic functions in higher dimensions

Author:
R. Z. Yeh

Journal:
Trans. Amer. Math. Soc. **345** (1994), 151-177

MSC:
Primary 26E05; Secondary 30G35, 31B05, 35C10, 35J99

Erratum:
Trans. Amer. Math. Soc. **347** (1995), null.

MathSciNet review:
1260207

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Holomorphic functions in are defined to generalize those in . A Taylor formula and a Cauchy integral formula are presented. An application of the Taylor formula to the kernel of the Cauchy integral formula results in Taylor series expansions of holomorphic functions. Real harmonic functions are expanded in series of homogeneous harmonic polynomials.

**[1]**R. Courant and D. Hilbert,*Methods of mathematical physics*, Vol. 2, Wiley-Interscience, New York, 1962.**[2]**Richard Delanghe,*On regular-analytic functions with values in a Clifford algebra*, Math. Ann.**185**(1970), 91–111. MR**0265618****[3]**William Feller,*An introduction to probability theory and its applications. Vol. I*, Third edition, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0228020****[4]**W. K. Hayman,*Power series expansions for harmonic functions*, Bull. London Math. Soc.**2**(1970), 152–158. MR**0267114****[5]**Gerald N. Hile,*Representations of solutions of a special class of first order systems*, J. Differential Equations**25**(1977), no. 3, 410–424. MR**0499218****[6]**Gerald N. Hile and Pertti Lounesto,*Matrix representations of Clifford algebras*, Linear Algebra Appl.**128**(1990), 51–63. MR**1049072**, 10.1016/0024-3795(90)90282-H**[7]**R. Z. Yeh,*Hyperholomorphic functions and higher order partial differential equations in the plane*, Pacific J. Math.**142**(1990), no. 2, 379–399. MR**1042052****[8]**R. Z. Yeh,*Solutions of polyharmonic Dirichlet problems derived from general solutions in the plane*, J. Math. Anal. Appl.**154**(1991), no. 2, 341–363. MR**1088636**, 10.1016/0022-247X(91)90042-X**[9]**R. Z. Yeh,*Hyperholomorphic functions and second order partial differential equations in 𝑅ⁿ*, Trans. Amer. Math. Soc.**325**(1991), no. 1, 287–318. MR**1015927**, 10.1090/S0002-9947-1991-1015927-9

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
26E05,
30G35,
31B05,
35C10,
35J99

Retrieve articles in all journals with MSC: 26E05, 30G35, 31B05, 35C10, 35J99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1994-1260207-2

Keywords:
Hypercomplex numbers,
holomorphic functions,
Cauchy-Riemann equations,
symmetric powers,
Stieltjes line integrals,
Taylor formula,
Cauchy integral formula,
divergence theorem,
Leibniz's rule,
power series,
harmonic functions,
Poisson equation,
Laplace equation,
polynomial expansions

Article copyright:
© Copyright 1994
American Mathematical Society