Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A family of real $ 2\sp n$-tic fields


Authors: Yuan Yuan Shen and Lawrence C. Washington
Journal: Trans. Amer. Math. Soc. 345 (1994), 413-434
MSC: Primary 11R21; Secondary 11R09, 11R27
DOI: https://doi.org/10.1090/S0002-9947-1994-1264151-6
MathSciNet review: 1264151
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the family of polynomials

$\displaystyle {P_n}(X;a) = \Re ({(X + i)^{{2^n}}}) - \frac{a}{{{2^n}}}\Im ({(X + i)^{{2^n}}})$

and determine when $ {P_n}(X;a)$, $ a \in \mathbb{Z}$, is irreducible. The roots are all real and are permuted cyclically by a linear fractional transformation defined over the real subfield of the $ {2^n}$th cyclotomic field. The families of fields we obtain are natural extensions of those studied by M.-N. Gras and Y.-Y. Shen, but in general the present fields are non-Galois for $ n \geq 4$. From the roots we obtain a set of independent units for the Galois closure that generate an "almost fundamental piece" of the full group of units. Finally, we discuss the two examples where our fields are Galois, namely $ a = \pm {2^n}$ and $ a = \pm {2^4} \bullet 239$.

References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.
  • [2] G. Cornell and L. C. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), 260-274. MR 814005 (87d:11079)
  • [3] Marie-Nicole Gras, Special units in real cyclic sextic fields, Math. Comp. 48 (1987), 179-182. MR 866107 (88m:11092)
  • [4] -, Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $ \mathbb{Q}$, Publ. Math. Besançon, 1977-1978, fasc 2, 53 pp.
  • [5] Andrew J. Lazaras, The class number and cyclotomy of simplest quartic fields, Ph.D. thesis, Univ. of California, Berkeley, 1989.
  • [6] -, Class numbers of simplest quartic fields, Number Theory (R. A. Mollin, ed.), De Gruyter, Berlin and New York, 1990, pp. 313-323. MR 1106670 (92d:11119)
  • [7] -, On the class number and unit index of simplest quartic fields, Nagoya Math. J. 121 (1991), 1-13. MR 1096465 (92a:11129)
  • [8] F. van der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), 693-707. MR 669662 (84e:12005)
  • [9] W. Ljunggren, Zur Theorie der Gleichung $ {x^2} + 1 = D{y^4}$ , Avh. Norske Vid.-Akad. Oslo I (N.S.) no. 5 (1942), 27 pp. MR 0016375 (8:6f)
  • [10] René Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. MR 929552 (89h:11067b)
  • [11] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. MR 0352049 (50:4537)
  • [12] Y.-Y. Shen, Units of real cyclic octic fields, Ph.D. thesis, Univ. of Maryland at College Park, 1988.
  • [13] -, Unit groups and class numbers of real cyclic octic fields, Trans. Amer. Math. Soc. 326 (1991), 179-209. MR 1031243 (91j:11092)
  • [14] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation $ {X^2} + 1 = 2{Y^4}$ , J. Number Theory 37 (1991), 123-132. MR 1092598 (91m:11018)
  • [15] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83, Springer-Verlag, New York, 1982. MR 718674 (85g:11001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R21, 11R09, 11R27

Retrieve articles in all journals with MSC: 11R21, 11R09, 11R27


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1264151-6
Keywords: $ {2^n}$-tic fields, units
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society