Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory
HTML articles powered by AMS MathViewer

by Walter Philipp PDF
Trans. Amer. Math. Soc. 345 (1994), 705-727 Request permission

Abstract:

Let $\mathcal {T} = \{ {q_1}, \ldots ,{q_\tau }\}$ be a finite set of coprime integers and let $\{ {n_1},{n_2}, \ldots \}$ denote the mutiplicative semigroup generated by $\mathcal {T}$, and arranged in increasing order. Let ${D_N}(\omega )$ denote the discrepancy of the sequence $\{ {n_k}\omega \} _{k = 1}^N\bmod 1$, $\omega \in [0,1)$. In this paper we solve a problem posed by R.C. Baker [3], by proving that for all $\omega$ except on a set of Lebesgue measure 0 \[ \frac {1}{4} \leq \lim \sup \limits _{N \to \infty } \frac {{N{D_N}(\omega )}}{{\sqrt {N\log \log N} }} \leq C.\] Here the constant C only depends on the total number of primes involved in the prime factorization of ${q_1}, \ldots ,{q_\tau }$. The lower bound is obtained from a strong approximation theorem for the partial sums of the sequence $\{ \cos 2\pi {n_k}\omega \} _{k = 1}^\infty$ by sums of independent standard normal random variables.
References
  • R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 191–198. MR 409395, DOI 10.1093/qmath/27.2.191
  • R. C. Baker, Metric number theory and the large sieve, J. London Math. Soc. (2) 24 (1981), no. 1, 34–40. MR 623668, DOI 10.1112/jlms/s2-24.1.34
  • —, Personal communication, 1979.
  • I. Berkes, An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 26 (1975), 209–220. MR 426085, DOI 10.1007/BF01895964
  • I. Berkes, Probability theory of the trigonometric system, Limit theorems in probability and statistics (Pécs, 1989) Colloq. Math. Soc. János Bolyai, vol. 57, North-Holland, Amsterdam, 1990, pp. 35–58. MR 1116778
  • Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
  • J. W. S. Cassels, Some metrical theorems of Diophantine approximation. III, Proc. Cambridge Philos. Soc. 46 (1950), 219–225. MR 36789, DOI 10.1017/s0305004100025688
  • J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
  • P. Erdős, Problems and results on diophantine approximations, Compositio Math. 16 (1964), 52–65 (1964). MR 179131
  • P. Erdös and J. F. Koksma, On the uniform distribution modulo $1$ of sequences $(f(n,\theta ))$, Nederl. Akad. Wetensch., Proc. 52 (1949), 851–854 = Indagationes Math. 11, 299–302 (1949). MR 32690
  • Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences, Compositio Math. 53 (1984), no. 2, 225–244. MR 766298
  • J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, $S$-unit equations and their applications, New advances in transcendence theory (Durham, 1986) Cambridge Univ. Press, Cambridge, 1988, pp. 110–174. MR 971998
  • L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
  • Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
  • J. M. Marstrand, On Khinchin’s conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540–556. MR 291091, DOI 10.1112/plms/s3-21.3.540
  • Ditlev Monrad and Walter Philipp, Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory Related Fields 88 (1991), no. 3, 381–404. MR 1100898, DOI 10.1007/BF01418867
  • F. A. Móricz, R. J. Serfling, and W. F. Stout, Moment and probability bounds with quasisuperadditive structure for the maximum partial sum, Ann. Probab. 10 (1982), no. 4, 1032–1040. MR 672303
  • R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), no. 3, 183–193. MR 1082999, DOI 10.4064/aa-56-3-183-193
  • Walter Philipp, Limit theorems for lacunary series and uniform distribution $\textrm {mod}\ 1$, Acta Arith. 26 (1974/75), no. 3, 241–251. MR 379420, DOI 10.4064/aa-26-3-241-251
  • Walter Philipp, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probability 5 (1977), no. 3, 319–350. MR 443024, DOI 10.1214/aop/1176995795
  • I. F. Pinelis, An approach to inequalities for the distributions of infinite-dimensional martingales, Probability in Banach Spaces, Proc. Eighth Internat. Conf., Birkhäuser, 1992. A. J. van der Porten and H.P. Schlickewei, The growth conditions for recurrence sequences, Macquarie Univ. Math. Rep., 82-0041, North Ridge, Australia, 1982.
  • Volker Strassen, Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 315–343. MR 0214118
  • R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319–330. MR 325549
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 11K31, 11K06, 60F15
  • Retrieve articles in all journals with MSC: 11K31, 11K06, 60F15
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 345 (1994), 705-727
  • MSC: Primary 11K31; Secondary 11K06, 60F15
  • DOI: https://doi.org/10.1090/S0002-9947-1994-1249469-5
  • MathSciNet review: 1249469