A class of exceptional polynomials

Authors:
Stephen D. Cohen and Rex W. Matthews

Journal:
Trans. Amer. Math. Soc. **345** (1994), 897-909

MSC:
Primary 11T06

DOI:
https://doi.org/10.1090/S0002-9947-1994-1272675-0

MathSciNet review:
1272675

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a class of indecomposable polynomials of non prime-power degree over the finite field of two elements which are permutation polynomials on infinitely many finite extensions of the field. The associated geometric monodromy groups are the simple groups , where and odd. (The first member of this class was previously found by P. Müller [17]. This realises one of only two possibilities for such a class which remain following deep work of Fried, Guralnick and Saxl [7]. The other is associated with , , and odd in fields of characteristic 3.

**[1]**J. V. Brawley, L. Carlitz, and Jack Levine,*Scalar polynomial functions on the 𝑛×𝑛 matrices over a finite field*, Linear Algebra and Appl.**10**(1975), 199–217. MR**0376625****[2]**Leonard Carlitz,*On factorable polynomials in several indeterminates*, Duke Math. J.**2**(1936), no. 4, 660–670. MR**1545956**, https://doi.org/10.1215/S0012-7094-36-00256-9**[3]**Stephen D. Cohen,*The distribution of polynomials over finite fields*, Acta Arith.**17**(1970), 255–271. MR**0277501**, https://doi.org/10.4064/aa-17-3-255-271**[4]**Stephen D. Cohen,*Exceptional polynomials and the reducibility of substitution polynomials*, Enseign. Math. (2)**36**(1990), no. 1-2, 53–65. MR**1071414****[5]**Stephen D. Cohen,*Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials*, Canad. Math. Bull.**33**(1990), no. 2, 230–234. MR**1060378**, https://doi.org/10.4153/CMB-1990-036-3**[6]**Stephen D. Cohen,*Permutation polynomials and primitive permutation groups*, Arch. Math. (Basel)**57**(1991), no. 5, 417–423. MR**1129514**, https://doi.org/10.1007/BF01246737**[7]**Michael D. Fried, Robert Guralnick, and Jan Saxl,*Schur covers and Carlitz’s conjecture*, Israel J. Math.**82**(1993), no. 1-3, 157–225. MR**1239049**, https://doi.org/10.1007/BF02808112**[8]**Marie Henderson and Rex Matthews,*Permutation properties of Chebyshev polynomials of the second kind over a finite field*, Finite Fields Appl.**1**(1995), no. 1, 115–125. MR**1334629**, https://doi.org/10.1006/ffta.1995.1008**[9]**N. S. James and R. Lidl,*Permutation polynomials on matrices*, Linear Algebra Appl.**96**(1987), 181–190. MR**910993**, https://doi.org/10.1016/0024-3795(87)90343-0**[10]**R. Lidl and R. W. Matthews,*GALOIS: an algebra microcomputer package*, Congr. Numer.**66**(1988), 145–156. Nineteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1988). MR**992897****[11]**Rudolf Lidl and Gary L. Mullen,*Unsolved Problems: When Does a Polynomial Over a Finite Field Permute the Elements of the Field?*, Amer. Math. Monthly**95**(1988), no. 3, 243–246. MR**1541277**, https://doi.org/10.2307/2323626**[12]**R. Lidl, G. L. Mullen, and G. Turnwald,*Dickson polynomials*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR**1237403****[13]**Rudolf Lidl and Harald Niederreiter,*Finite fields*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR**1429394****[14]**R. W. Matthews,*Permutation polynomials in one and several variables*, PhD. Thesis, Univ. of Tasmania, Hobart, 1982.**[15]**W. H. Mills,*The degrees of the factors of certain polynomials over finite fields.*, Proc. Amer. Math. Soc.**25**(1970), 860–863. MR**0263783**, https://doi.org/10.1090/S0002-9939-1970-0263783-0**[16]**Gary L. Mullen,*Permutation polynomials over finite fields*, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 131–151. MR**1199828****[17]**Peter Müller,*New examples of exceptional polynomials*, Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993) Contemp. Math., vol. 168, Amer. Math. Soc., Providence, RI, 1994, pp. 245–249. MR**1291433**, https://doi.org/10.1090/conm/168/01704**[18]**T. Tsuzuku,*Finite groups and finite geometries*, Cambridge Tracts in Mathematics, vol. 70, Cambridge University Press, Cambridge-New York, 1982. Translated from the Japanese by A. Sevenster and T. Okuyama [Tetsuro Okuyama]. MR**645725****[19]**Da Qing Wan,*A 𝑝-adic lifting lemma and its applications to permutation polynomials*, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 209–216. MR**1199834**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11T06

Retrieve articles in all journals with MSC: 11T06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1272675-0

Keywords:
Exceptional polynomials,
permutation polynomials,
finite fields

Article copyright:
© Copyright 1994
American Mathematical Society