Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On orthogonal polynomials with respect to varying measures on the unit circle


Author: K. Pan
Journal: Trans. Amer. Math. Soc. 346 (1994), 331-340
MSC: Primary 42C05
MathSciNet review: 1273539
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {\phi _n}(d\mu )\} $ be a system of orthonormal polynomials on the unit circle with respect to $ d\mu $ and $ \{ {\psi _{n,m}}(d\mu )\} $ be a system of orthonormal polynomials on the unit circle with respect to the varying measures $ d\mu /\vert{w_n}(z){\vert^2},\;z = {e^{i\theta }}$, where $ \{ {w_n}(z)\} $ is a sequence of polynomials, $ \deg {w_n} = n$, whose zeros $ {w_{n,1}}, \ldots ,{w_{n,n}}$ lie in $ \vert z\vert < 1$ The asymptotic behavior of the ratio of the two systems on and outside the unit circle is obtained.


References [Enhancements On Off] (What's this?)

  • [F] G. Freud, Orthogonal polynomials, Pergamon Press, New York, 1971.
  • [G] Ja. L. Geronimus, Polynomials orthogonal on a circle and interval, Translated from the Russian by D. E. Brown; edited by Ian N. Sneddon. International Series of Monographs on Pure and Applied Mathematics, Vol. 18, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0133642
  • [LP] X. Li and K. Pan, Strong and weak convergence of rational functions orthogonal on the unit circle, submitted..
  • [Lo1] G. López, Szegö's theorem for polynomials orthogonal with respect to varying measures, Orthogonal Polynomials and their Applications (M. Alfaro et al., eds.), Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 255-260.
  • [Lo2] -, On the asymptotics of the ratio of orthogonal polynomials and the convergence of multipoint Padé approximants, Math. USSR-Sb. 56 (1987), 207-219.
  • [Lo3] Guillermo López Lagomasino, Asymptotics of polynomials orthogonal with respect to varying measures, Constr. Approx. 5 (1989), no. 2, 199–219. MR 989673, 10.1007/BF01889607
  • [Lo4] G. L. Lopes, Convergence of Padé approximants for meromorphic functions of Stieltjes type and comparative asymptotics for orthogonal polynomials, Mat. Sb. (N.S.) 136(178) (1988), no. 2, 206–226, 301 (Russian); English transl., Math. USSR-Sb. 64 (1989), no. 1, 207–227. MR 954925
  • [MNT1] Attila Máté, Paul Nevai, and Vilmos Totik, Strong and weak convergence of orthogonal polynomials, Amer. J. Math. 109 (1987), no. 2, 239–281. MR 882423, 10.2307/2374574
  • [MNT2] Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, 10.1007/BF01890553
  • [P1] K. Pan, Strong and weak convergence of orthogonal systems of rational functions on the unit circle, J. Comput. Appl. Math. 46 (1993), no. 3, 427–436. MR 1223008, 10.1016/0377-0427(93)90038-D
  • [P2] K. Pan, On the convergence of the rational interpolation approximant of Carathéodory functions, J. Comput. Appl. Math. 54 (1994), no. 3, 371–376. MR 1321080, 10.1016/0377-0427(94)90257-7

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C05

Retrieve articles in all journals with MSC: 42C05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1994-1273539-9
Keywords: Orthogonal polynomials, asymptotic properties
Article copyright: © Copyright 1994 American Mathematical Society