On orthogonal polynomials with respect to varying measures on the unit circle

Author:
K. Pan

Journal:
Trans. Amer. Math. Soc. **346** (1994), 331-340

MSC:
Primary 42C05

MathSciNet review:
1273539

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a system of orthonormal polynomials on the unit circle with respect to and be a system of orthonormal polynomials on the unit circle with respect to the varying measures , where is a sequence of polynomials, , whose zeros lie in The asymptotic behavior of the ratio of the two systems on and outside the unit circle is obtained.

**[F]**G. Freud,*Orthogonal polynomials*, Pergamon Press, New York, 1971.**[G]**Ja. L. Geronimus,*Polynomials orthogonal on a circle and interval*, Translated from the Russian by D. E. Brown; edited by Ian N. Sneddon. International Series of Monographs on Pure and Applied Mathematics, Vol. 18, Pergamon Press, New York-Oxford-London-Paris, 1960. MR**0133642****[LP]**X. Li and K. Pan,*Strong and weak convergence of rational functions orthogonal on the unit circle*, submitted..**[Lo1]**G. López,*Szegö's theorem for polynomials orthogonal with respect to varying measures*, Orthogonal Polynomials and their Applications (M. Alfaro et al., eds.), Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 255-260.**[Lo2]**-,*On the asymptotics of the ratio of orthogonal polynomials and the convergence of multipoint Padé approximants*, Math. USSR-Sb.**56**(1987), 207-219.**[Lo3]**Guillermo López Lagomasino,*Asymptotics of polynomials orthogonal with respect to varying measures*, Constr. Approx.**5**(1989), no. 2, 199–219. MR**989673**, 10.1007/BF01889607**[Lo4]**G. L. Lopes,*Convergence of Padé approximants for meromorphic functions of Stieltjes type and comparative asymptotics for orthogonal polynomials*, Mat. Sb. (N.S.)**136(178)**(1988), no. 2, 206–226, 301 (Russian); English transl., Math. USSR-Sb.**64**(1989), no. 1, 207–227. MR**954925****[MNT1]**Attila Máté, Paul Nevai, and Vilmos Totik,*Strong and weak convergence of orthogonal polynomials*, Amer. J. Math.**109**(1987), no. 2, 239–281. MR**882423**, 10.2307/2374574**[MNT2]**Attila Máté, Paul Nevai, and Vilmos Totik,*Extensions of Szegő’s theory of orthogonal polynomials. II, III*, Constr. Approx.**3**(1987), no. 1, 51–72, 73–96. MR**892168**, 10.1007/BF01890553**[P1]**K. Pan,*Strong and weak convergence of orthogonal systems of rational functions on the unit circle*, J. Comput. Appl. Math.**46**(1993), no. 3, 427–436. MR**1223008**, 10.1016/0377-0427(93)90038-D**[P2]**K. Pan,*On the convergence of the rational interpolation approximant of Carathéodory functions*, J. Comput. Appl. Math.**54**(1994), no. 3, 371–376. MR**1321080**, 10.1016/0377-0427(94)90257-7

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42C05

Retrieve articles in all journals with MSC: 42C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1273539-9

Keywords:
Orthogonal polynomials,
asymptotic properties

Article copyright:
© Copyright 1994
American Mathematical Society