Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the oblique derivative problem for diffusion processes and diffusion equations with Hölder continuous coefficients


Author: Masaaki Tsuchiya
Journal: Trans. Amer. Math. Soc. 346 (1994), 257-281
MSC: Primary 60J60; Secondary 35K20, 35R60
MathSciNet review: 1273542
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On a $ {C^2}$-domain in a Euclidean space, we consider the oblique derivative problem for a diffusion equation and assume the coefficients of the diffusion and boundary operators are Hölder continuous. We then prove the uniqueness of diffusion processes and fundamental solutions corresponding to the problem. For the purpose, obtaining a stochastic representation of some solutions to the problem plays a key role; in our situation, a difficulty arises from the absence of a fundamental solution with $ {C^2}$-smoothness up to the boundary. It is overcome by showing some stability of a fundamental solution and a diffusion process, respectively, under approximation of the domain. In particular, the stability of the fundamental solution is verified through construction: it is done by applying the parametrix method twice to a parametrix with explicit expression.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Anderson, Diffusions with second order boundary conditions. I, Indiana Univ. Math. J. 25 (1976), no. 4, 367–395. MR 0413286
  • [2] Reiko Arima, On general boundary value problem for parabolic equations, J. Math. Kyoto Univ. 4 (1964), 207–243. MR 0197997
  • [3] Jean-Michel Bony, Philippe Courrège, and Pierre Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 2, 369–521 (1969) (French). MR 0245085
  • [4] C. Costantini, The Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations, Probab. Theory Related Fields 91 (1992), no. 1, 43–70. MR 1142761, 10.1007/BF01194489
  • [5] Paul Dupuis and Hitoshi Ishii, On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains, Nonlinear Anal. 15 (1990), no. 12, 1123–1138. MR 1082287, 10.1016/0362-546X(90)90048-L
  • [6] Paul Dupuis and Hitoshi Ishii, On oblique derivative problems for fully nonlinear second-order elliptic PDEs on domains with corners, Hokkaido Math. J. 20 (1991), no. 1, 135–164. MR 1096165, 10.14492/hokmj/1381413798
  • [7] Paul Dupuis and Hitoshi Ishii, SDEs with oblique reflection on nonsmooth domains, Ann. Probab. 21 (1993), no. 1, 554–580. MR 1207237
  • [8] S. D. Èidel'man and S. D. Ivasišen, Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc. 23 (1970), 179-242.
  • [9] Halina Frankowska, A viability approach to the Skorohod problem, Stochastics 14 (1985), no. 3, 227–244. MR 800245, 10.1080/17442508508833340
  • [10] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [11] M. G. Garroni and J.-L. Menaldi, Green functions for second order parabolic integro-differential problems, Pitman Research Notes in Mathematics Series, vol. 275, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1202037
  • [12] M. G. Garroni and V. A. Solonnikov, On parabolic oblique derivative problem with Hölder continuous coefficients, Comm. Partial Differential Equations 9 (1984), no. 14, 1323–1372. MR 765964, 10.1080/03605308408820365
  • [13] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR 0473443
  • [14] Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682
  • [15] Carl Graham, The martingale problem with sticky reflection conditions, and a system of particles interacting at the boundary, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 1, 45–72 (English, with French summary). MR 937956
  • [16] Nobuyuki Ikeda, On the construction of two-dimensional diffusion processes satisfying Wentzell’s boundary conditions and its application to boundary value problems., Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 367–427. MR 0126883
  • [17] H. Kawakami and M. Tsuchiya, Construction of fundamental solutions of the oblique derivative problem for diffusion equations with Hölder continuous coefficients on compact Riemannian domains (in preparation).
  • [18] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, R.I., 1968.
  • [19] P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), no. 4, 511–537. MR 745330, 10.1002/cpa.3160370408
  • [20] R. A. Mikulyavichus, On the martingale problem, Russian Math. Surveys 37 (1982), 137-150.
  • [21] Shintaro Nakao and Tokuzo Shiga, On the uniqueness of solutions of stochastic differential equations with boundary conditions, J. Math. Kyoto Univ. 12 (1972), 451–478. MR 0310971
  • [22] Shintaro Nakao and Tokuzo Shiga, On the uniqueness of solutions of stochastic differential equations with boundary conditions, J. Math. Kyoto Univ. 12 (1972), 451–478. MR 0310971
  • [23] Yasumasa Saisho, Stochastic differential equations for multidimensional domain with reflecting boundary, Probab. Theory Related Fields 74 (1987), no. 3, 455–477. MR 873889, 10.1007/BF00699100
  • [24] Keniti Sato and Tadashi Ueno, Multi-dimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 4 (1964/1965), 529–605. MR 0198547
  • [25] Kōji Shiga, Tayotai ron. II, III, Iwanami Shoten Kiso Sūgaku. [Iwanami Lectures on Fundamental Mathematics], Iwanami Shoten, Tokyo, 1976 (Japanese). Kikagaku [Geometry], i. MR 851012
  • [26] A. V. Skorohod, Stochastic equations for diffusion processes in a bounded region. I, II, Theory Probab. Appl. 6 (1961), 264-274; ibid. 7 (1962), 3-23.
  • [27] Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math. 22 (1969), 345–400. MR 0253426
  • [28] Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147–225. MR 0277037
  • [29] Kazuaki Taira, Diffusion processes and partial differential equations, Academic Press, Inc., Boston, MA, 1988. MR 954835
  • [30] Kazuaki Taira, On the existence of Feller semigroups with boundary conditions, Mem. Amer. Math. Soc. 99 (1992), no. 475, viii+65. MR 1120243, 10.1090/memo/0475
  • [31] Satoshi Takanobu and Shinzo Watanabe, On the existence and uniqueness of diffusion processes with Wentzell’s boundary conditions, J. Math. Kyoto Univ. 28 (1988), no. 1, 71–80. MR 929208
  • [32] Hiroshi Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9 (1979), no. 1, 163–177. MR 529332
  • [33] Masaaki Tsuchiya, Parametrix of diffusion equations with boundary conditions, Ann. Sci. Kanazawa Univ. 17 (1980), 1–11 (1981). MR 621022
  • [34] Masaaki Tsuchiya, A Volterra type integral equation related to the boundary value problem for diffusion equations, Ann. Sci. Kanazawa Univ. 30 (1993), 15–30. MR 1253394
  • [35] Shinzo Watanabe, On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions, J. Math. Kyoto Univ. 11 (1971), 169–180. MR 0275537
  • [36] -, Construction of diffusion processes with Wentzell's boundary conditions by means of Poisson point processes of Brownian excursions, Probability Theory, Banach Center Publications, Vol. 5, Polish Scientific Publishers, Warsaw, 1979, pp. 255-271.
  • [37] A. Weis, Invariant measures of diffusion processes on domains with boundaries, Ph.D. dissertation, New York Univ., 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 35K20, 35R60

Retrieve articles in all journals with MSC: 60J60, 35K20, 35R60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1994-1273542-9
Keywords: Oblique derivative problem, martingale problem, fundamental solution
Article copyright: © Copyright 1994 American Mathematical Society