Geometric invariants for Seifert fibred manifolds
Author:
Ming Qing Ouyang
Journal:
Trans. Amer. Math. Soc. 346 (1994), 641659
MSC:
Primary 55R55; Secondary 55R10, 57N10, 57R20
MathSciNet review:
1257644
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we obtain a formula for the invariant of the signature operator for some circle bundles over Riemannian orbifolds. We then apply it to Seifert fibred manifolds endowed with one of the six Seifert geometries. By using a relation between the ChernSimons invariant and the invariant, we also derive some elementary formulae for the ChernSimons invariant of these manifolds. As applications, we show that some families of these manifolds cannot be conformally immersed into the Euclidean space .
 [1]
M.
F. Atiyah, V.
K. Patodi, and I.
M. Singer, Spectral asymmetry and Riemannian geometry. I,
Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.
MR
0397797 (53 #1655a)
 [2]
M.
F. Atiyah, V.
K. Patodi, and I.
M. Singer, Spectral asymmetry and Riemannian geometry. II,
Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3,
405–432. MR 0397798
(53 #1655b)
 [3]
Shiing
Shen Chern and James
Simons, Characteristic forms and geometric invariants, Ann. of
Math. (2) 99 (1974), 48–69. MR 0353327
(50 #5811)
 [4]
Peter
B. Gilkey, The boundary integrand in the formula for the signature
and Euler characteristic of a Riemannian manifold with boundary,
Advances in Math. 15 (1975), 334–360. MR 0368084
(51 #4326)
 [5]
James
L. Heitsch and H.
Blaine Lawson Jr., Transgressions, ChernSimons invariants and the
classical groups, J. Differential Geometry 9 (1974),
423–434. MR 0353328
(50 #5812)
 [6]
Morris
W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 0119214
(22 #9980), http://dx.doi.org/10.1090/S00029947195901192144
 [7]
F.
Hirzebruch and D.
Zagier, The AtiyahSinger theorem and elementary number
theory, Publish or Perish, Inc., Boston, Mass., 1974. Mathematics
Lecture Series, No. 3. MR 0650832
(58 #31291)
 [8]
Tetsuro
Kawasaki, The signature theorem for 𝑉manifolds,
Topology 17 (1978), no. 1, 75–83. MR 0474432
(57 #14072)
 [9]
Tetsuro
Kawasaki, The index of elliptic operators over
𝑉manifolds, Nagoya Math. J. 84 (1981),
135–157. MR
641150 (83i:58095)
 [10]
Mutsumi
Komuro, On AtiyahPatodiSinger 𝜂invariant for
𝑆¹bundles over Riemann surfaces, J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 30 (1984), no. 3, 525–548.
MR 731516
(85a:58091)
 [11]
W. Neumann and M. Jankins, Seifert manifolds, Lecture notes, Brandeis Univ., 1981.
 [12]
Ichirô
Satake, The GaussBonnet theorem for 𝑉manifolds, J.
Math. Soc. Japan 9 (1957), 464–492. MR 0095520
(20 #2022)
 [13]
Peter
Scott, The geometries of 3manifolds, Bull. London Math. Soc.
15 (1983), no. 5, 401–487. MR 705527
(84m:57009), http://dx.doi.org/10.1112/blms/15.5.401
 [14]
José
Seade and Brian
Steer, A note on the eta function for quotients of
𝑃𝑆𝐿₂(𝑅) by cocompact Fuchsian
groups, Topology 26 (1987), no. 1, 79–91.
MR 880510
(88d:58131), http://dx.doi.org/10.1016/00409383(87)900231
 [15]
W. Thurston, The geometry and topology of manifolds, Lecture notes, Princeton Univ., 1978.
 [16]
William
P. Thurston, Threedimensional manifolds, Kleinian
groups and hyperbolic geometry, Bull. Amer.
Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524
(83h:57019), http://dx.doi.org/10.1090/S027309791982150030
 [1]
 M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 4369. MR 0397797 (53:1655a)
 [2]
 , Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), 402433. MR 0397798 (53:1655b)
 [3]
 S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 4869. MR 0353327 (50:5811)
 [4]
 P. Gilkey, The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary, Adv. Math. 15 (1975), 344360. MR 0368084 (51:4326)
 [5]
 J. Heitsch and H. Lawson, Transgressions, ChernSimons invariants and the classical groups, J. Differential Geom. 9 (1974), 423434. MR 0353328 (50:5812)
 [6]
 M. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242276. MR 0119214 (22:9980)
 [7]
 F. Hirzebruch and D. Zagier, The AtiyahSinger theorem and elementary number theory, Publish or Perish, 1974. MR 0650832 (58:31291)
 [8]
 T. Kawasaki, The signature theorem for manifolds, Topology 17 (1978), 7583. MR 0474432 (57:14072)
 [9]
 The index of elliptic operators over manifolds, Nagoya Math. J. 84 (1981), 135157. MR 641150 (83i:58095)
 [10]
 M. Komuro, On the AtiyahPadotiSinger invariant for bundles over Riemann surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), 525548. MR 731516 (85a:58091)
 [11]
 W. Neumann and M. Jankins, Seifert manifolds, Lecture notes, Brandeis Univ., 1981.
 [12]
 I. Satake, The GaussBonnet theorem for manifolds, J. Math. Soc. Japan 9 (1957), 464493. MR 0095520 (20:2022)
 [13]
 P. Scott, The geometries of manifolds, Bull. London. Math. Soc. 15 (1983), 401487. MR 705527 (84m:57009)
 [14]
 J. Seade and B. Steer, A note on the eta function for quotients of by cocompact Fuchsian groups, Topology 26 (1987), 7991. MR 880510 (88d:58131)
 [15]
 W. Thurston, The geometry and topology of manifolds, Lecture notes, Princeton Univ., 1978.
 [16]
 W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357381. MR 648524 (83h:57019)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
55R55,
55R10,
57N10,
57R20
Retrieve articles in all journals
with MSC:
55R55,
55R10,
57N10,
57R20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199412576449
PII:
S 00029947(1994)12576449
Article copyright:
© Copyright 1994
American Mathematical Society
