Geometric invariants for Seifert fibred -manifolds

Author:
Ming Qing Ouyang

Journal:
Trans. Amer. Math. Soc. **346** (1994), 641-659

MSC:
Primary 55R55; Secondary 55R10, 57N10, 57R20

MathSciNet review:
1257644

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain a formula for the -invariant of the signature operator for some circle bundles over Riemannian -orbifolds. We then apply it to Seifert fibred -manifolds endowed with one of the six Seifert geometries. By using a relation between the Chern-Simons invariant and the -invariant, we also derive some elementary formulae for the Chern-Simons invariant of these manifolds. As applications, we show that some families of these manifolds cannot be conformally immersed into the Euclidean space .

**[1]**M. F. Atiyah, V. K. Patodi, and I. M. Singer,*Spectral asymmetry and Riemannian geometry. I*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 43–69. MR**0397797****[2]**M. F. Atiyah, V. K. Patodi, and I. M. Singer,*Spectral asymmetry and Riemannian geometry. II*, Math. Proc. Cambridge Philos. Soc.**78**(1975), no. 3, 405–432. MR**0397798****[3]**Shiing Shen Chern and James Simons,*Characteristic forms and geometric invariants*, Ann. of Math. (2)**99**(1974), 48–69. MR**0353327****[4]**Peter B. Gilkey,*The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary*, Advances in Math.**15**(1975), 334–360. MR**0368084****[5]**James L. Heitsch and H. Blaine Lawson Jr.,*Transgressions, Chern-Simons invariants and the classical groups*, J. Differential Geometry**9**(1974), 423–434. MR**0353328****[6]**Morris W. Hirsch,*Immersions of manifolds*, Trans. Amer. Math. Soc.**93**(1959), 242–276. MR**0119214**, 10.1090/S0002-9947-1959-0119214-4**[7]**F. Hirzebruch and D. Zagier,*The Atiyah-Singer theorem and elementary number theory*, Publish or Perish, Inc., Boston, Mass., 1974. Mathematics Lecture Series, No. 3. MR**0650832****[8]**Tetsuro Kawasaki,*The signature theorem for 𝑉-manifolds*, Topology**17**(1978), no. 1, 75–83. MR**0474432****[9]**Tetsuro Kawasaki,*The index of elliptic operators over 𝑉-manifolds*, Nagoya Math. J.**84**(1981), 135–157. MR**641150****[10]**Mutsumi Komuro,*On Atiyah-Patodi-Singer 𝜂-invariant for 𝑆¹-bundles over Riemann surfaces*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**30**(1984), no. 3, 525–548. MR**731516****[11]**W. Neumann and M. Jankins,*Seifert manifolds*, Lecture notes, Brandeis Univ., 1981.**[12]**Ichirô Satake,*The Gauss-Bonnet theorem for 𝑉-manifolds*, J. Math. Soc. Japan**9**(1957), 464–492. MR**0095520****[13]**Peter Scott,*The geometries of 3-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, 10.1112/blms/15.5.401**[14]**José Seade and Brian Steer,*A note on the eta function for quotients of 𝑃𝑆𝐿₂(𝑅) by co-compact Fuchsian groups*, Topology**26**(1987), no. 1, 79–91. MR**880510**, 10.1016/0040-9383(87)90023-1**[15]**W. Thurston,*The geometry and topology of*-*manifolds*, Lecture notes, Princeton Univ., 1978.**[16]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55R55,
55R10,
57N10,
57R20

Retrieve articles in all journals with MSC: 55R55, 55R10, 57N10, 57R20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1257644-9

Article copyright:
© Copyright 1994
American Mathematical Society