Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Global oscillatory waves for second order quasilinear wave equations

Author: Paul Godin
Journal: Trans. Amer. Math. Soc. 346 (1994), 523-547
MSC: Primary 35L70; Secondary 35B40, 58G16
MathSciNet review: 1270662
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the global existence and describe the asymptotic behaviour of a family of oscillatory solutions of Cauchy problems for a class of scalar second order quasilinear wave equations, when the space dimension is odd and at least equal to $ 3$. If time is bounded, corresponding results for quasilinear first order systems were obtained by Guès; to prove our results we reduce our problems to bounded time problems with the help of a conformal inversion. To obtain global results, suitable geometric assumptions must be made on the set where the oscillations are concentrated at initial time.

References [Enhancements On Off] (What's this?)

  • [1] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282. MR 820070 (87c:35111)
  • [2] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 2, Interscience, 1962.
  • [3] P. Godin, Long time existence of piecewise smooth progressing waves for semilinear wave equations, J. Math. Pures Appl. 72 (1993), 15-56. MR 1201252 (94c:35126)
  • [4] -, Global sound waves for quasilinear second order wave equations, Math. Ann. 298 (1994), 497-531. MR 1262773 (95f:35156)
  • [5] O. Guès, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Analysis 6 (1993), 241-269. MR 1201195 (94b:35067)
  • [6] J. L. Joly, G. Métivier, and J. Rauch, Remarques sur l'optique géométrique non linéaire multidimensionnelle, exposé no. 1, Séminaire EDP, Ecole Polytechnique, Palaiseau, 1990-91.
  • [7] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43-101. MR 544044 (81b:35050)
  • [8] -, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. MR 784477 (86i:35091)
  • [9] -, The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293-326. MR 837683 (87h:35217)
  • [10] T. T. Li and Y. M. Chen, Initial value problems for nonlinear wave equations, Comm. Partial Differential Equations 13 (1988), 383-422. MR 920909 (89e:35102)
  • [11] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., vol. 53, Springer, 1984. MR 748308 (85e:35077)
  • [12] G. Métivier, Problèmes de Cauchy et ondes non linéaires, Actes du Colloque de Saint-Jean-de-Monts 1986, exposé no. 1, Editions de l'Ecole Polytechnique, Palaiseau, 1986. MR 874543
  • [13] K. Morawetz, Energy decay for star-shaped obstacles, in Scattering Theory (P. D. Lax and R. Phillips), Academic Press, 1967, pp. 261-264.
  • [14] M. Spivak, A comprehensive introduction to differential geometry, Vols. 3, 4, Publish or Perish, 1979.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L70, 35B40, 58G16

Retrieve articles in all journals with MSC: 35L70, 35B40, 58G16

Additional Information

Keywords: Quasilinear second order wave equations, global existence, oscillatory solutions, conformal inversion
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society