On the local regularity of solutions in linear viscoelasticity of several space dimensions

Author:
Jong Uhn Kim

Journal:
Trans. Amer. Math. Soc. **346** (1994), 359-398

MSC:
Primary 35L10; Secondary 35B65, 35R10, 45K05, 73F15

DOI:
https://doi.org/10.1090/S0002-9947-1994-1270666-7

MathSciNet review:
1270666

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we discuss the local regularity of solutions of a nonlocal system of equations which describe the motion of a viscoelastic medium in several space dimensions. Our main tool is the microlocal analysis combined with MacCamy's trick and the argument of the classical energy method.

**[1]**R. Beals,*Characterization of pseudodifferential operators and applications*, Duke Math. J.**44**(1977), 45-57; correction**46**(1979), p. 215. MR**0435933 (55:8884)****[2]**B. D. Coleman, M. E. Gurtin, and I. R. Herrera,*Waves in materials with memory*, Arch. Rational Mech. Anal.**19**(1965), 1-19, 239-265. MR**0195336 (33:3538)****[3]**C. M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, J. Differential Equations**7**(1970), 554-569. MR**0259670 (41:4305)****[4]**G. F. D. Duff,*The Cauchy problem for elastic waves in an anisotropic medium*, Philos. Trans. Roy. Soc. London Ser. A**252**(1960), 249-273. MR**0111293 (22:2157)****[5]**J. M. Greenberg, L. Hsiao and R. C. MacCamy,*A model Riemann problem for Volterra equations*, Volterra and Functional Differential Equations (K. Hannsgen et al., eds.), Marcel Dekker, New York, 1982, pp. 25-43. MR**703531 (84j:45049)****[6]**G. Gripenberg, S-O. Londen, and O. Staffans,*Volterra integral and functional equations*, Cambridge Univ. Press, Cambridge, 1990. MR**1050319 (91c:45003)****[7]**K. B. Hannsgen and R. L. Wheeler,*Behavior of the solutions of a Volterra equation as a parameter tends to infinity*, J. Integral Equations**7**(1984), 229-237. MR**770149 (86b:45004)****[8]**L. Hörmander,*On the existence and the regularity of solutions of linear pseudo-differential equations*, Enseign. Math. (2)**17**(1971), 99-163. MR**0331124 (48:9458)****[9]**-,*The analysis of linear partial differential operators*. Vol. 3, Springer-Verlag, Berlin, 1985.**[10]**W. J. Hrusa and M. Renardy,*On wave propagation in linear viscoelasticity*, Quart. Appl. Math.**43**(1985), 237-254. MR**793532 (86j:45022)****[11]**J. U. Kim,*Local regularity of the one-dimensional motion of a viscoelastic medium*, SIAM J. Math. Anal. (to appear). MR**1325912 (96b:35139)****[12]**R. C. MacCamy,*A model Riemann problem for Volterra equations*, Arch. Rational Mech. Anal.**82**(1983), 71-86. MR**684414 (84e:45007)****[13]**M. Renardy,*Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids*, Rheology Acta**21**(1982), 251-254. MR**669374 (83j:76007)****[14]**M. Renardy, W. J. Hrusa, and J. A. Nohel,*Mathematical problems in viscoelasticity*, Longman, New York, 1986. MR**919738 (89b:35134)****[15]**M. E. Taylor,*Pseudodifferential operators*, Princeton Univ. Press, Princeton, NJ, 1981.**[16]**-,*Rayleigh waves in linear elasticity as a propagation of singularities phenomenon*, Partial Differential Equations and Geometry (Proc. Conf., Park City, UT, 1977; C. I. Byrnes, ed.), Marcel Dekker, New York, 1979, pp. 273-291. MR**535598 (80i:73016)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L10,
35B65,
35R10,
45K05,
73F15

Retrieve articles in all journals with MSC: 35L10, 35B65, 35R10, 45K05, 73F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1270666-7

Keywords:
Local regularity,
MacCamy's trick,
propagation of singularities,
energy method,
microlocal regularity,
bicharacteristic strip,
bicharacteristic curve,
singular support

Article copyright:
© Copyright 1994
American Mathematical Society