On the local regularity of solutions in linear viscoelasticity of several space dimensions

Author:
Jong Uhn Kim

Journal:
Trans. Amer. Math. Soc. **346** (1994), 359-398

MSC:
Primary 35L10; Secondary 35B65, 35R10, 45K05, 73F15

MathSciNet review:
1270666

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we discuss the local regularity of solutions of a nonlocal system of equations which describe the motion of a viscoelastic medium in several space dimensions. Our main tool is the microlocal analysis combined with MacCamy's trick and the argument of the classical energy method.

**[1]**Richard Beals,*Characterization of pseudodifferential operators and applications*, Duke Math. J.**44**(1977), no. 1, 45–57. MR**0435933****[2]**Bernard D. Coleman and Morton E. Gurtin,*Waves in materials with memory. II. On the growth and decay of one-dimensional acceleration waves*, Arch. Rational Mech. Anal.**19**(1965), 239–265. MR**0195336****[3]**Constantine M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, J. Differential Equations**7**(1970), 554–569. MR**0259670****[4]**G. F. D. Duff,*The Cauchy problem for elastic waves in an anistropic medium*, Philos. Trans. Roy. Soc. London Ser. A**252**(1960), 249–273. MR**0111293****[5]**J. M. Greenberg, Ling Hsiao, and R. C. MacCamy,*A model Riemann problem for Volterra equations*, Volterra and functional-differential equations (Blacksburg, Va., 1981), Lecture Notes in Pure and Appl. Math., vol. 81, Dekker, New York, 1982, pp. 25–43. MR**703531****[6]**G. Gripenberg, S.-O. Londen, and O. Staffans,*Volterra integral and functional equations*, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR**1050319****[7]**Kenneth B. Hannsgen and Robert L. Wheeler,*Behavior of the solution of a Volterra equation as a parameter tends to infinity*, J. Integral Equations**7**(1984), no. 3, 229–237. MR**770149****[8]**Lars Hörmander,*On the existence and the regularity of solutions of linear pseudo-differential equations*, Enseignement Math. (2)**17**(1971), 99–163. MR**0331124****[9]**-,*The analysis of linear partial differential operators*. Vol. 3, Springer-Verlag, Berlin, 1985.**[10]**W. J. Hrusa and M. Renardy,*On wave propagation in linear viscoelasticity*, Quart. Appl. Math.**43**(1985), no. 2, 237–254. MR**793532****[11]**Jong Uhn Kim,*Local regularity of the one-dimensional motion of a viscoelastic medium*, SIAM J. Math. Anal.**26**(1995), no. 3, 738–749. MR**1325912**, 10.1137/S0036141092227599**[12]**R. C. MacCamy,*A model Riemann problem for Volterra equations*, Arch. Rational Mech. Anal.**82**(1983), no. 1, 71–86. MR**684414**, 10.1007/BF00251725**[13]**M. Renardy,*Some remarks on the propagation and nonpropagation of discontinuities in linearly viscoelastic liquids*, Rheol. Acta**21**(1982), no. 3, 251–254. MR**669374**, 10.1007/BF01515713**[14]**Michael Renardy, William J. Hrusa, and John A. Nohel,*Mathematical problems in viscoelasticity*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR**919738****[15]**M. E. Taylor,*Pseudodifferential operators*, Princeton Univ. Press, Princeton, NJ, 1981.**[16]**Michael E. Taylor,*Rayleigh waves in linear elasticity as a propagation of singularities phenomenon*, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 273–291. MR**535598**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L10,
35B65,
35R10,
45K05,
73F15

Retrieve articles in all journals with MSC: 35L10, 35B65, 35R10, 45K05, 73F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1270666-7

Keywords:
Local regularity,
MacCamy's trick,
propagation of singularities,
energy method,
microlocal regularity,
bicharacteristic strip,
bicharacteristic curve,
singular support

Article copyright:
© Copyright 1994
American Mathematical Society