GENERALIZATION OF THE WHITNEY-MAHOWALD THEOREM

BANG-HE LI

Abstract. The Whitney-Mahowald theorem gave normal Euler number (mod 4) for embeddings of a closed 2n-manifold in Euclidean 4n-space. We generalize this theorem to embeddings of closed 2n-manifolds in an oriented 4n-manifold with an approach in the framework of unoriented bordism groups of maps.

1. Introduction

Given a map \(f : M \to N \), where \(M \) and \(N \) are smooth connected manifolds with dimensions \(n \) and 2n respectively, and \(M \) is closed, \(N \) is oriented, there is a question:

\((*) \) What is the set of the normal Euler classes of smooth embeddings in the homotopy class \([f]\)?

An orientation of \(N \) and a map \(f : M \to N \) determine an isomorphism \(H^n(M, \mathbb{Z}) \to \mathbb{Z} \) which sends the normal Euler class of an embedding \(g \) in \([f]\) to an integer \(\chi(g) \) called the normal Euler number \(g \), where \(\mathbb{Z} \) is the local integer coefficients associated to the orientation line bundle of \(M \). For odd \(n \), the normal Euler classes are always zero. Hence Question \((*) \) is interesting only for even \(n \).

H. Whitney [Wh1] first proved that any \(n \) manifold embeds in \(\mathbb{R}^{2n} \). By using Whitney's technique, J. Milnor proved in [Mi] that if \(N \) is simply connected and \(n > 2 \), then any \(f : M \to N \) is homotopic to embeddings. The following more general result is due to Haefliger [Ha]:

Theorem 1 (Haefliger). If \(n > 2 \) and \(f : M^n \to N^{2n} \) is a map with \(f_* : \pi_1(M) \to \pi_1(N) \) surjective, then \(f \) is homotopic to embeddings.

If \(M \) is orientable, then the normal Euler numbers of embeddings are uniquely determined by their homotopy classes. However, if \(M \) is nonorientable, the situation changes. Whitney [Wh2] in the case \(n = 2 \), and Mahowald [Mah] in the case of \(n \) even, proved that if \(f : M^n \to \mathbb{R}^{2n} \) is an embedding, then

\[
\chi(f) = 2\overline{w}_1(M)\overline{w}_{n-1}(M) \mod 4,
\]

where \(2\overline{w}_1(M)\overline{w}_{n-1}(M) \) is understood as the image of the dual Stiefel-Whitney number \(\overline{w}_1(M)\overline{w}_{n-1}(M) \) under the natural inclusion \(\mathbb{Z}_2 \to \mathbb{Z}_4 \).

Received by the editors September 2, 1993.
1991 Mathematics Subject Classification. Primary 57N35.
This work is partially supported by the National Funds of Science of P. R. China.
Malyi [Mal] proved that if $n > 2$ is even and M^n is nonorientable, then for any integer x with $x = 2\bar{w}_1(M)\bar{w}_{n-1}(M) \mod 4$, there is an embedding $f : M^n \to \mathbb{R}^{2n}$ with $\chi(f) = x$.

W. S. Massey gave a new proof of Mahowald's theorem in [Mas], by using the following formula proved also by him:

$$P(U_2) = (p_4(X) + e(w_1w_{n-1})) \cdot U,$$

where U is the Thom class of an n-dimensional vector bundle ξ over B with n even, X the Euler class of ξ, both U and X take local integer coefficients \tilde{Z} determined by ξ, $U_2 = U \mod 2$, w_i the ith Whitney class of ξ, \tilde{P} the Pontryagin square, and

$$\tilde{P} : H^q(B, \tilde{Z}) \to H^q(B, \tilde{Z}_4), \quad \tilde{\theta} : H^q(B, \mathbb{Z}_2) \to H^q(B, \mathbb{Z}_4)$$

the natural homomorphisms.

To generalize Mahowald's theorem to embeddings of M^n in an oriented N^{2n}, we define first $P : H_n(N, \mathbb{Z}_2) \to \mathbb{Z}_4$ as follows:

For any $x \in H_n(N, \mathbb{Z}_2)$, take a compact submanifold N^{2n}_x of N so that $x = i_\ast y$, where

$$i_\ast : H_n(N_x, \mathbb{Z}_2) \to H_n(N, \mathbb{Z}_2)$$

is the natural homomorphism and $y \in H_n(N_x, \mathbb{Z}_2)$. Let

$$Dy \in H^n(N_x, \partial N_x, \mathbb{Z}_2) \cong H^n(N_x/\partial N_x, \mathbb{Z}_2)$$

be the Lefschetz dual of y. Then

$$P(x) = \langle \tilde{P}(Dy), [N_x/\partial N_x] \rangle,$$

where $[N_x/\partial N_x]$ is the fundamental class of $H_{2n}(N_x/\partial N_x, \mathbb{Z}_4) \cong \mathbb{Z}_4$

determined by the orientation of N_x inherited from that of N, and $\langle \ , \rangle$ stands for the Kronecker product.

It is easy to see that P is well defined and if n is even, then

$$P(x + y) = P(x) + P(y) + 2x \cdot y,$$

where $x \cdot y$ is the intersection number (the proof depends on a formula for the Pontryagin square; cf. [MT, p. 21]).

Now we are in a position to state

Theorem 2. Let n be even.

1. If $f : M^n \to N^{2n}$ is an embedding, then

$$\chi(f) = P(f_\ast [M]) + 2w_1(f)w_{n-1}(f) \mod 4$$

where $[M]$ is the generator of $H_n(M, \mathbb{Z}_2) \cong \mathbb{Z}_2$, and $w_1(f)$ the ith normal Whitney class of f.

2. If $n > 2$, M is nonorientable, and f is a map with $f_\ast : \tilde{\pi}_1(M) \to \pi_1(N)$ surjective, where $\tilde{\pi}_1(M)$ is the subgroup of $\pi_1(M)$ consisting of orientation-preserving elements, then normal Euler numbers of embeddings in $[f]$ fill the mod 4 residue class $P(f_\ast [M]) + 2w_1(f)w_{n-1}(f)$.

Corollary 1. If n is even, and $f, g : M^n \to N^{2n}$ are homotopic embeddings, then $\chi(f) = \chi(g) \mod 4$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 2 (The generalized Whitney congruence of Rohlin [Ro]). Let \(f : M^2 \to N^4 \) be an embedding, where \(N \) is oriented closed and \(f_*[M] \) is characteristic, then
\[
\sigma(N) = \chi(f) + 2\chi(M) \mod 4,
\]
where \(\sigma(N) \) is the signature of \(N \), and \(\chi(M) \) stands for the Euler characteristic number of \(M \).

Theorem 3. Let \(\mathcal{N}_n(N) \) be the bordism group of maps from closed (possibly non-orientable) \(n \)-manifolds into the oriented \(2n \)-manifold \(N \). Then \(P(f_*[M]) + 2w_1(f)w_{n-1}(f) \) gives a map \(q : \mathcal{N}_n(N) \to \mathbb{Z}_4 \) with the following properties:

1. Any element \(x \in \mathcal{N}_n(N) \) includes embeddings with normal Euler numbers \mod 4 equal to \(q(x) \).
2. A self-transversal immersion with only double points in \(x \) has \mod 4 normal Euler number equal to \(q(x) \) (or \(q(x) + 2 \)) if and only if its number of self-intersection points is even (or odd).
3. Let \(x, y \in \mathcal{N}_n(N) \) be represented by \(f : M_1 \to N \) and \(g : M_2 \to N \), and define \(x \cdot y \) as \(f_*[M_1] \cdot g_*[M_2] \in \mathbb{Z}_2 \). Then \(x \cdot y \) gives a bilinear form on \(\mathcal{N}_n(N) \) and
\[
q(x + y) = q(x) + q(y) + 2x \cdot y.
\]

In general, it is difficult to calculate Pontryagin squares. We shall give another formula for \(q(x) \) in a special case that \(N \) is the total space of the orientation line bundle of a manifold \(K^{2n-1} \), e.g. \(N = R^{2n-1} \times R = R^{2n} \).

Let \(f : M^n \to K^{2n-1} \) be a map, \(K' \) a compact \((2n - 1)\)-dimensional submanifold of \(K \) containing \(f(M) \), and \(D : H_n(K', Z_2) \to H^{n-1}(K', \partial K'; Z_2) \) the Lefschetz dual. Then
\[
u(f) = f^*Df_*[M] \in H^{n-1}(M, Z_2)
\]
is well defined. We have

Theorem 4. If \(N \) is the total space of the orientation line bundle of \(K^{2n-1} \) with \(n \) even, and \(f : M \to N \) is an embedding, then
\[
\chi(f) = 2\bar{\omega}_1(f)(u(f) + \bar{\omega}_{n-1}(f)) \mod 4,
\]
where \(\bar{\omega}_i(f) \) is the \(i \)th stable normal Whitney class of \(f \) regarded as a map \(M \to K \), and \(u(f) \) is understood similarly.

Remark 1. The proof of Theorem 4 is geometric, hence different from those of Mahowald and of Massey for \(N = R^{2n} \).

Remark 2. By Theorem 3 and the proof of Theorem 4, we have
\[
q(x) = 2\bar{\omega}_1(f)(u(f) + \bar{\omega}_{n-1}(f)),$
\]
where \(f \in x \in \mathcal{N}_n(K) = \mathcal{N}_n(N) \), and a formula expressing \(P(f_*[M]) \) in terms of \(u(f), \omega_1(K), \) and \(\omega_i(f), i \leq n - 1 \), can be gotten. From this we see that if \(K^{2n-1} \) is orientable with \(n \) even and \(N = K \times R \), \(y \in H_n(N, Z_2) \) with \(P(y) \neq 0 \), then there is no map \(f : M^n \to N \) with \(M \) orientable and \(f_*[M] = y \).
Example. Let $g : M = RP^n \# RP^n \to RP^n$ be the map collapsing the second copy to a point, and f be the composition

$$M \xrightarrow{g} RP^n \subset RP^{2n-1} \subset RP^{2n-1} \times R.$$

Then

$$f_* : \tilde{\pi}_1(M) \to \pi_1(RP^{2n-1} \times R)$$

is surjective, and it follows from (2) of Theorem 2 that if $n > 2$ is even, then the normal Euler numbers of the embeddings homotopic to f fill a mod 4 residue class. Now Theorem 4 tells us that this class is $4\mathbb{Z}$. And we see that for the generator x of $H_n(RP^{2n-1} \times R)$, $P(x) = 2$, and hence x is not represented by maps from orientable n-manifolds.

Remark 3. The earliest preprint of this paper was typed in 1989, under the title “Embedding n-manifolds in $2n$-manifolds” and was used and quoted in [Li3]. The main content of the paper was given in a talk in a conference held at Tokyo University, September, 1990.

Remark 4. Recently, Yamada [Ya] found the formula in part (1) of Theorem 2 for the case $n = 2$ with $H_1(M, \mathbb{Z}) = 0$ independently, using a geometric method.

2. Proof of Theorem 2

Let $f : M \to N$ be an embedding, N_f a compact tubular neighbourhood of $f(M)$. Regard N_f as the disk bundle of the normal bundle of f; we have by Massey’s formula

$$\tilde{P}(U_2) = (\tilde{\rho}_4(X(f)) + \theta(w_1(f)w_{n-1}(f))) \cdot U$$

where $X(f)$ is the normal Euler class.

Let $[N_f/\partial N_f]$ be the fundamental class of

$$H^{2n}(N_f/\partial N_f, \mathbb{Z}_4) \cong \mathbb{Z}_4$$

corresponding to the orientation of N_f inherited from that of N. Since $U_2 \in H^n(N_f, \partial N_f; \mathbb{Z}_2)$ is the Lefschetz dual of $f_*[M] \in H_n(N_f, \mathbb{Z}_2)$, we have

$$\tilde{P}(U_2) = P(f_*[M])[N_f/\partial N_f].$$

Let $\chi(f)$ be the normal Euler number determined by the orientation of N. Then the Thom isomorphism

$$H^n(M, \tilde{\mathbb{Z}}_4) \cong H^{2n}(N_f/\partial N_f, \mathbb{Z}_4)$$

given by $x \to x \cdot U$ sends

$$(\tilde{\rho}_4(X(f)) + \theta(w_1(f)w_{n-1}(f))) \cdot U$$

to

$$(\chi(f) + 2w_1(f)w_{n-1}(f))[N_f/\partial N_f];$$

hence

$$\chi(f) = P(f_*[M]) + 2w_1(f)w_{n-1}(f) \mod 4$$

and (1) is proved.

Suppose $n > 2$ and $f_* : \tilde{\pi}_1(M) \to \pi_1(N)$ is surjective. Then by Theorem 1, f is homotopic to embeddings and we may assume f is an embedding.
For any \(m \in \mathbb{Z} \), take a self-transversal immersion \(h : S^n \to S^{2n} \) with \(2|m| \) self-intersection points and \(\chi(h) = 4m \). Making a suitable connected sum of \(f \) and \(h \), we get a self-transversal immersion \(g = f \# h : M \to N \) homotopic to \(f \) with \(2|m| \) self-intersection points and \(\chi(g) = \chi(f) + 4m \). Assume \(a_1, b_1, a_2, b_2, \ldots, a_{2|m|}, b_{2|m|} \) are distinct points in \(M \) such that \(g(a_i) = g(b_i) \).

Choose simple curves \(I_i, i = 1, 2 \), connecting \(a_i \) and \(b_i \) such that \(I_1 \cap I_2 = \emptyset \) and \(I_1 \cap \{a_3, b_3, \ldots, a_{2|m|}, b_{2|m|}\} = \emptyset \). Then \(g(I_1) \) and \(g(I_2) \) form a simple closed curve \(\gamma \) in \(N \). Given orientations of \(T(M) \) on \(I_1 \) and \(I_2 \), the signs of self-intersections of \(g \) at \(g(a_1) \) and \(g(a_2) \) are determined. The surjectivity of \(f_* : \pi_1(M) \to \pi_1(N) \) together with its implicit that there exist elements in \(\pi_1(M) \setminus \pi_1(N) \) which are in the kernel of \(f_* \) allows us to choose \(I_2 \) so that \(\gamma \) is nullhomotopic and the signs at \(g(a_1) \) and \(g(a_2) \) are opposite. Thus, by Whitney’s technique, we can get an immersion regularly homotopic to \(g \) with \(2|m| - 2 \) self-intersection points. Continuing in this way, we will get at last an embedding regularly homotopic to \(g \). This proves (2).

Proof of Corollary 2. By a formula of Wu (see [Wu] or [Th]),

\[
P(f_*[M]) = \tilde{P}(w_2(N)) = p_1(N) \mod 4 + 2w_4(N),
\]

where \(p_1 \) is the first Pontryagin class of \(N \), \(w_4(N) + \sigma(N) \mod 2 \) is an \(\mathcal{N}_4^{so} \)-invariant, and \(w_4(CP^2) + \sigma(CP^2) \mod 2 = 0 \); hence \(w_4(N) + \sigma(N) \mod 2 = 0 \) for any \(N \). This fact together with \(p_1(N) = 3\sigma(N) \) implies \(P(f_*[M]) = \sigma(N) \mod 4 \). Now, Corollary 2 follows from (1) of Theorem 2.

3. Proof of Theorem 3

First, since \(f_*([M]) \) and \(w_1(f)w_{n-1}(f) \) are bordism invariants, \(q \) is well defined.

Now, let \(f : M \to N \) be a self-transversal immersion, and \(b \in N \) be a self-intersection point of \(f \) such that \(b = f(a_1) = f(a_2) \), but \(a_1 \neq a_2 \). Take a neighbourhood of \(b \) which corresponds to \(R^{2n} \) diffeomorphically such that the image of \(f \) in this neighbourhood corresponds to \(R^n \times 0 \cup 0 \times R^n \). For \(x \in R^n \) with \(|x| < 2 \), let \(v(x, 0) = (0, x) \), \(v(0, x) = (x, 0) \). Then \(v \) extends to a normal vector field of \(f \) denoted by \(\nu \) also. We may assume \(v \) is transversal to the zero section since it is already so at \(a_1 \) and \(a_2 \). The normal Euler number of \(f \) is the algebraic sum of the zeros of \(v \), and the total contribution of \(a_1 \) and \(a_2 \) is \(\pm 2 \).

Let \(\gamma \) be a curve in the plane as shown in Figure 1.
We assume \(\gamma(t) = (\gamma_1(t), \gamma_2(t)), 0 \leq t \leq 1, \) such that \(\gamma(0) = (0, 1), \gamma(1) = (1, 0), \) and \(\gamma \) contacts with the \(x \)-axis and \(y \)-axis smoothly.

Let
\[
D^n = \{ x \in \mathbb{R}^n | |x| < 1 \},
S^{n-1} = \{ x \in \mathbb{R}^n | |x| = 1 \}.
\]

Take off the neighbourhoods of \(a_1 \) and \(a_2 \) in \(M \) which correspond to \(D^n \times 0 \) and \(0 \times D^n \), and then add \(S^{2n-1} \times I \) naturally; we get a new manifold \(M' \).

Mapping \(S^{n-1} \times I \) to \(\mathbb{R}^{2n} \) by
\[
(\omega, t) \rightarrow (\gamma_1(t)\omega, \gamma_2(t)\omega),
\]
we have an immersion \(f' \) of \(M' \) in \(N \) and a normal vector field \(v' \) of \(f' \) which are identical with \(f \) and \(v \) respectively outside the neighbourhoods of \(a_1 \) and \(a_2 \). On \(S^{n-1} \times I \), we may assume \(v' \) has no zeros, as can be seen from Figure 2.

Now it is clear that the numbers of self-intersection points of \(f \) and \(f' \) differ by 1 and their normal Euler numbers differ by 2.

Since \(f \) and \(f' \) are obviously bordant, and any bordism class in \(\mathcal{N}_n(N) \) is represented by a self-transversal immersion, we prove property (1) by repeating the process from \(f \) to \(f' \) and Theorem 2, (1).

If \(f \) has even (odd) number of self-intersection points, then \(f \) is bordant to an embedding \(g \) with \(\chi(f) - \chi(g) = 2 \times \) even number (2\(\times \) odd number). This proves (2).

Property (3) is straightforward since
\[
P(x + y) = P(x) + P(y) + 2x \cdot y
\]
and
\[
w_1(x + y)w_{n-1}(x + y) = w_1(x)w_{n-1}(x) + w_1(y)w_{n-1}(y).
\]

The proof is complete.

4. Proof of Theorem 4

We divide the proof into three steps.

Step 1. First, we notice that the homotopy class \([f] \in [M, N]\) is represented by a self-transversal immersion \(g : M \to K \) (cf. [LP]). Regard \(g \) as an immersion of \(M \) in \(N \); then its normal bundle includes a line bundle, hence has an orientation-reversing automorphism. Thus \(2\chi(g) = 0 \) (cf. [Li1]), and \(\chi(g) = 0 \). We will prove in Steps 2 and 3 that \(g \) is regularly homotopic to a self-transversal immersion \(f_1 \) of \(M \) in \(N \) with mod 2 number of
self-intersection points \(w_1(g)(u(g) + w_{n-1}(g)) \). Since an immersion regularly homotopic to embeddings must have an even number of self-intersections, and \(\chi(g) = 0 \), Theorem 3 follows immediately from the classification theorem of immersions of \(M \) in \(N \) (cf. \([\text{Li2}]\)).

The aim of Step 2 (for \(n > 2 \)) and Step 3 (for \(n = 2 \)) is to construct an immersion \(f_1 : M \to N \) which is self-transversal and regularly homotopic to \(g \), and calculate the number of self-intersection points of \(f_1 \).

Step 2. Suppose \(n > 2 \). Then the multiple points of \(g \) consist only of double points whose set \(X \subset M \) is the disjoint union of some circles \(S_1, \ldots, S_k \) such that \(g(S_{2i-1}) = g(S_{2i}) \), \(i = 1, \ldots, j \), and \(S_i \to g(S_i) \) is a nontrivial 2-sheet covering if \(i > 2j \). By formula (1) and the introduction of \([\text{He}]\), we see that the homology class \([X]\) in \(H_1(M, \mathbb{Z}_2) \) represented by \(X \) is the Poincaré dual of \(u(g) + w_{n-1}(g) \).

Let \(\delta_i = \pm 1 \) (\(\delta = \pm 1 \)) so that \(\epsilon_i = 1 \) (\(\delta_i = 1 \)) iff \(S_i \) (\(g(S_i) \)) is orientation-preserving in \(M \) (in \(K \)). Then it is easy to see that

\[
\delta_{2i-1} = \delta_{2i} = \epsilon_{2i-1} \epsilon_{2i} \quad \text{if} \ 1 < i \leq j, \\
\delta_i = -\epsilon_i \quad \text{if} \ 2j < i \leq k.
\]

Denoting by \(\xi \) the orientation bundle of \(K \), and \(\xi_0 \) the bundle of nonzero vectors of \(\xi \), we define \(f_1 \) on \(X \) as follows:

1. If \(1 \leq i \leq j \), then \(f_1 = g \) on \(S_{2i-1} \) and \(f_1 = u \circ g \) on \(S_{2i} \), where \(u \) is a smooth section of \(g(S_{2i}) \) transversal to the zero section.
2. If \(i > 2j \) and \(\delta_i = -1 \), then there is a smooth map \(f_1 : S_i \to \xi_0 \) such that \(p \circ f_1 = g \), where \(p \) is the projection of \(\xi \).
3. If \(i > 2j \) and \(\delta_i = 1 \), then there is a smooth map \(f_1 : S_i \to \xi \) with \(p \circ f_1 = g \) such that \(f_1 \) has only one transversal self-intersection point.

Extend \(f_1 \) to an immersion of \(M \) in \(N \) so that \(f_1 = g \) outside a tubular neighbourhood of \(X \), and \(p \circ f_1 = g \) on this neighbourhood. Then \(f_1 \) is regularly homotopic to \(g \) in \(N \) and has only transversal self-intersection points in \(f_1(X) \).

Now we calculate

\[
\langle w_1(g), [X] \rangle = \sum_{i=1}^{k} \langle w_1(g), [S_i] \rangle.
\]

Letting \(s(1) = 0 \) and \(s(-1) = 1 \), we have

\[
\langle w_1(M), [S_i] \rangle = s(\epsilon_i), \\
\langle g^*w_1(K), [S_i] \rangle = \begin{cases}
 s(\delta_i), & 1 \leq i \leq 2j, \\
 0, & 2j < i \leq k.
\end{cases}
\]

It follows then from

\[
w_1(M) + w_1(g) = g^*w_1(K)
\]

that

1. if \(1 \leq i \leq j \),

\[
\langle w_1(g), [S_{2i-1}] + [S_{2i}] \rangle = \begin{cases}
 0, & \text{if} \ \delta_{2i} = 1, \\
 1, & \text{if} \ \delta_{2i} = -1.
\end{cases}
\]

2. if \(2j < i \leq k \) and \(\delta_i = -1 \),

\[
\langle w_1(g), [S_i] \rangle = 0;
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(3) if $2j < i \leq k$ and $\delta_i = 1$,

$$\langle w_1(g), [S_i] \rangle = 1.$$

This shows that $\langle w_1(g), [X] \rangle$ is equal to mod 2 number of self-intersection points of f_i. Since

$$\langle w_1(g), [X] \rangle = w_1(g)(u(g) + w_{n-1}(g)),$$

the proof for the case $n > 2$ is complete.

Step 3. Suppose $n = 2$. Now, the multiple points of g consist of double points and triple points whose set $X \subset M$ is the image of a self-transversal immersion h of the disjoint union of some l copies of the circle S. Denote by h_i the restriction of h on the ith copy of S.

Let

$$X_1 = \bigcup_{i=1}^{k} h_i(S), \quad X_2 = \bigcup_{i=k+1}^{l} h_i(S)$$

such that each $h_i(S)$ in X_1 includes triple points, while X_2 does not. Then $X_1 \cap X_2 = \emptyset$ and $h_\alpha(S) \cap h_\beta(S) = \emptyset$, if $k < \alpha < \beta \leq l$, and $X = X_1 \cup X_2$. Moreover, we have

$$g(X_1) \cap g(X_2) = \emptyset.$$

We are able to cope with X_2 exactly as in Step 2. To cope with X_1, we may assume first that

$$g(h_{2i-1}(S)) = g(h_{2i}(S)), \quad \text{if } 1 \leq i \leq j,$$

$$g(h_i(S)) \neq g(h_\alpha(S)), \quad \text{if } 2j < i \leq k, \alpha \neq i, 1 \leq \alpha \leq k.$$

We have also

$$\delta_{2i-1} = \delta_{2i} = \varepsilon_{2i-1} \varepsilon_{2i}, \quad \text{if } 1 \leq i \leq j,$$

$$\delta_i = -\varepsilon_i, \quad \text{if } 2j < i \leq k,$$

where $\varepsilon_j = \pm 1$, $\delta_i = \pm 1$, and $\varepsilon_i = 1$ ($\delta_i = 1$) iff $h_i : S \to M$ ($g \circ h_i : S \to K$) is an orientation-preserving loop.

Let $X_3 = \{d_1, d_2, \ldots, d_{3s}\} \subset X_1$ be the set of triple points of g which is the set of self-intersection points on h such that

$$g(d_{3i-2}) = g(d_{3i-1}) = g(d_{3i}), \quad 1 \leq i \leq s,$$

and let u be a nonzero section of ξ over $g(X_3)$. Let $t : X_3 \to R$ be given by

$$t(d_{3i-2}) = -1, \quad t(d_{3i-1}) = 0, \quad t(d_{3i}) = 1.$$

Step 3(a). Suppose $j \geq 1$ and

$$h_1^{-1}(X_3) = \{a_1, a_2, \ldots, a_\alpha\}.$$

Then

$$h_2^{-1}(X_3) = \{b_1, b_2, \ldots, b_\alpha\}$$

has the following properties.

1. $g(h_1(a_i)) = g(h_2(b_i))$,
2. $h_1(a_i) \neq h_2(b_i).$
Regarding S as $[0, 1]/\{0, 1\}$, we may assume that
\[
a_1 = 0 < a_2 < \cdots < a_\alpha < 1 = a_{\alpha+1},
\]
\[
a_i = b_i, \quad i = 1, 2, \ldots, \alpha + 1,
\]
\[
g(h_1(q)) = g(h_2(q)), \quad \text{for } q \in [0, 1].
\]
Define f_1 on X_3 by
\[
f_1(x) = t(x)u(g(x));
\]
then extend f_1 to a smooth map on $h_1(S)$ so that
\[
f_1(h_1(q)) = t_i(h_1(q))u_i(g(h_1(q))), \quad \text{if } q \in [a_i, a_{i+1}],
\]
where u_i is a nonzero smooth section of ξ over $g(h_1([a_i, a_{i+1}]))$ with
\[
(u_i \circ g \circ h_1)(q) = (u \circ g \circ h_1)(q) \quad \text{for } q = a_i, a_{i+1},
\]
and $t_i \circ h_1$ is a smooth function on $[a_i, a_{i+1}]$ such that
\[
t_i(h_1(q))u_i(g(h_1(q))) = t(h_1(q))u_i(g(h_1(q))), \quad \text{for } q = a_i, a_{i+1},
\]
and
\[
\frac{d}{dq} t_i(h_1(q))\left\{\begin{array}{l}
0 \quad \text{on } [a_i, a_i + \varepsilon] \cup [a_{i+1} - \varepsilon, a_{i+1}],
\end{array}\right.
\]
is either identically zero or nonzero on $(a_i + \varepsilon, a_{i+1} - \varepsilon)$, where $0 < \varepsilon < \frac{1}{2}(a_{i+1} - a_i)$ for $i = 1, 2, \ldots, \alpha$.

Let $v(q)$ be a vector in the fiber of ξ over $g(h_1(q))$ such that
\[
v(a_i) = (u_i \circ g \circ h_1)(a_i),
\]
\[
v(q) = \pm(u_i \circ g \circ h_1)(q), \quad \text{if } q \in [a_i, a_{i+1}],
\]
and v as a map $[a_1, a_{\alpha+1}] = [0, 1] \rightarrow N$ is continuous. Then v is smooth,
\[
v(a_{\alpha+1}) = s_1v(a_1)
\]
and
\[
f_1(h_1(a)) = s_1(q)v(q),
\]
where s_1 is a smooth real-valued function on $[0, 1]$ such that
\[
\frac{ds_1}{dq}\left\{\begin{array}{l}
0 \quad \text{if } |q - a_i| \leq \varepsilon \text{ for some } i,
\end{array}\right.
\]
is either identically zero or nonzero on $(a_i + \varepsilon, a_{i+1} - \varepsilon)$.

Similarly, we can define
\[
f_1(h_1(q)) = s_2(q)v(q), \quad q \in [0, 1],
\]
with the same v, and s_2 sharing the same properties of s_1 stated above. Since
\[
f_1(h_1(q)) = g(h_1(q)), \quad \text{for } q = 0, 1 \text{ and } i = 1, 2,
\]
we have
\[
s_i(0) = \delta_is_i(1), \quad i = 1, 2.
\]
Moreover, $s_1(a_i)$ and $s_2(a_i)$ belong to the set $\{0, \pm 1\}$ and
\[
s_1(a_i) \neq s_2(a_i), \quad i = 1, 2, \ldots, \alpha + 1,
\]
because $f_1(h_1(a_i)) \neq f_1(h_2(a_i))$. Therefore, the graphs of s_1 and s_2 intersect transversally, and the number of their intersections is even iff $\delta_1 = 1$. Using the same method, we define f_1 on $h_{2i-1}(S) \cup h_{2i}(S)$ for any $i \in [2, j]$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Step 3(b). Assume \(k > 2j \) and

\[h_k^{-1}(X_3) = \{ a_1, \ldots, a_\alpha, b_1, \ldots, b_\alpha \} \]

so that \(g(h_k(a_i)) = g(h_k(b_i)) \), and \(a_2, \ldots, a_\alpha \) are located in a half-circle bounded by \(a_1 \) and \(b_1 \). Let \(p_1 \) and \(p_2 \) be diffeomorphisms of \([0, 1]\) onto the half-circles containing \(a_2 \) and \(b_2 \) respectively such that

\[g \circ h_k \circ p_1 = g \circ h_k \circ p_2 \]

and \(f \circ h_k \circ p_i \) is smooth as a map defined on \([0, 1]/\{0, 1\}\). Then there are a map \(v : [0, 1] \to \xi \) and real-valued functions \(s_1 \) and \(s_2 \) on \([0, 1]\) as in step 3(a), and

\[
\begin{align*}
 v(1) &= \delta_k v(0), \\
 (f_1 \circ h_k \circ p_i)(q) &= s_i(q)v(q), \quad \text{for } q \in [0, 1] \text{ and } i = 1, 2, \\
 (f_1 \circ h_k \circ p_i)(q) &\neq (f_1 \circ h_k \circ p_2)(q), \quad q \in \{0, 1\}, \\
 (f_1 \circ h_k \circ p_i)(0) &\neq (f_1 \circ h_k \circ p_i)(1), \quad i = 1, 2, \\
 (f_1 \circ h_k \circ p_1)(0) &= (f_1 \circ h_k \circ p_2)(1), \\
 (f_1 \circ h_k \circ p_1)(1) &= (f_1 \circ h_k \circ p_2)(0).
\end{align*}
\]

Therefore, the graphs of \(s_1 \) and \(s_2 \) are transversal and the number of their intersections is even iff \(\delta_k = -1 \). Do the same for \(h_i(S) \) with \(2j < i \leq k \).

Combining Steps 2, 3(a), and 3(b), we have defined \(f_1 \) on \(X = X_1 \cup X_2 \). \(f_1 \) can be extended to an immersion of \(M \) in \(N \) regularly homotopic to \(g \) with transversal self-intersection points whose mod 2 number contributed by \(X_1 \) is

\[
\sum_{i=1}^j s(\delta_{2i}) + \sum_{i=2j+1}^k s(-\delta_i) = \langle w_1(g), [X_1] \rangle.
\]

This together with Steps 1 and 2 proves Theorem 4.

References

