Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free ideals of one-relator graded Lie algebras


Author: John P. Labute
Journal: Trans. Amer. Math. Soc. 347 (1995), 175-188
MSC: Primary 17B01; Secondary 17B70
DOI: https://doi.org/10.1090/S0002-9947-1995-1282891-0
MathSciNet review: 1282891
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that a one-relator graded Lie algebra $ \mathfrak{g} = L/(r)$, over a principal ideal domain $ K$, has a homogeneous ideal $ \mathfrak{h}$ with $ \mathfrak{g}/\mathfrak{h}$ a free $ K$-module of finite rank if the relator $ r$ is not a proper multiple of another element in the free Lie algebra $ L$. As an application, we deduce that the center of a one-relator Lie algebra over $ K$ is trivial if the rank of $ L$ is greater than two. As another application, we find a new class of one-relator pro-$ p$-groups which are of cohomological dimension $ 2$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 2, Hermann, Paris, 1972. MR 0573068 (58:28083a)
  • [2] H. Bass and A. Lubotsky, Linear-central filtrations on groups, The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (W. Abikoff, J.S. Birman and K. Kuiken, eds.), Contemporary Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 45-98. MR 1292897 (96c:20054)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956. MR 0077480 (17:1040e)
  • [4] J.P. Labute, Algèbres de Lie et pro-$ p$-groupes définis par une seule relation, Invent. Math 4 (1967), 142-158. MR 0218495 (36:1581)
  • [5] M. Lazard, Groupes analytiques $ p$-adiques, I.H.E.S. Publ. Math. 26 (1965), 389-603. MR 0209286 (35:188)
  • [6] K. Murasugi, The center of a group with a single defining relation, Math. Ann. 155 (1964), 246-251. MR 0163945 (29:1244)
  • [7] J-P. Serre, Cohomologie Galoisienne, Springer-Verlag, Berlin-Heidelberg-New York, 1965. MR 0201444 (34:1328)
  • [8] A. I. Širšov, Some algorithmic problems for Lie algebras, Sibirsk. Math. Ž. 3 (1962), 292-296. (Russian) MR 0183753 (32:1231)
  • [9] E. Witt, Die Unterringe der freien Lieschen Ringe, Math. Z. 64 (1956), 195-216. MR 0077525 (17:1050a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B01, 17B70

Retrieve articles in all journals with MSC: 17B01, 17B70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1282891-0
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society