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ON THE EXISTENCE OF GLOBAL TCHEBYCHEV NETS

SANDRA L. SAMELSON AND W. P. DAYAWANSA

Abstract. Let S be a complete, open simply connected surface. Suppose that

the integral of the Gauss curvature over arbitrary measurable sets is less than

tt/2 in magnitude. We show that the surface admits a global Tchebychev net.

1. Introduction

The mathematical analysis of the deformation of certain types of reinforced
networks has recently attracted attention. In one such network an initially pla-
nar, orthogonal set of fibers is deformed into a curved network in space. For

simplicity of analysis it is generally assumed that the network consists of a con-
tinuum of fibers, thus forming a surface. Such a surface is called a Tchebychev
net [Pip81].

From a mathematical point of view a (global) Tchebychev net can be de-

scribed as a system of local coordinates on a two-dimensional surface in SR3
such that the coordinate vector fields have unit magnitudes and the coordinate

transformations are mere translations. Alternatively one can describe it as a
commuting frame field of unit magnitude.

Tchebychev [Tch78] introduced the concept of Tchebychev nets in order to

model the deformation of cloth. More recently, Tchebychev nets have been
used to model curved surfaces of structures with fiber reinforcements [Riv59],

[Pip81], etc. One of the possible modern applications of Tchebychev nets is
in the construction of surfaces from graphite-epoxy composite materials. This

type of material is constructed by "weaving" layers of carbon fibers in order to
produce material elements of desirable shapes.

Here we focus on the global aspects of the problem. We assume that our
surface is complete, open and simply connected (hence diffeomorphic to 5R2),
and we ask whether or not we can put a global coordinate chart such that the
coordinate vector fields are of unit length.

A formula due to Hazzidakis [Haz80] asserts that on a Techebychev net the

integral of the Gauss curvature over an arbitrary coordinate rectangle should be
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less than 2n in magnitude. Therefore, the answer to our question is no in gen-

eral. This confirms the intutive notion that in order to fit a cloth over a surface,

its Gaussian curvature should not be too high. The main result contained in

this paper is that if the integral of the Gauss curvature of arbitrary measurable

subsets of the surface is less than n/2 in magnitude, then the surface admits a

global Tchebychev net.

2. Notation

We consider a complete open simply connected C°° surface S. Since S

is diffeomorphic to St2, without loss of generality we take S = 5R2 and let

{("l, u2)}(Ul,u2)eft2 De anv convenient coordinate system on S. Let g =

J2x<i j<2gijdu'duj be the Riemannian metric tensor on SR2 (so gij are real-

valued C°° functions on SR2).

V : Levi-Civita connection,

{Tt/}r<j,;,jfc<2 : Christoffel symbols,

k :   Gauss curvature,

dA :   Riemannian Area element (=  Jgxxg22 — g22duxdu2),

S+ = {x e 3?2 : k(x) > 0},

S' = {x g *R2 : k(x) < 0}.

3. Preliminaries

Definition 3.1. A Tchebychev net or (SR2, g) is a global coordinate chart {!R2,

(x1, x2)} such that || ^ \\g= \,i=\,2.

The problem posed here is to decide whether or not it is possible to find

a global coordinate system {(xx, x2)}(Xl X2)e^2 which is a Tchebychev net on

0R2,s).
It follows easily from Definition 3.1 that VxA = 0 if i / j, where V is

the Levi-Civita connection associated to g, i.e., -J^ is parallel along ^ and

vice-versa.
Let u = (ux, u2) be any given convenient coordinate system of 5R2. The

Riemannian metric and Christoffel symbols are given as in section 2 (in the given
{ux, u2} coordinate system). Let {xi, X2} denote an unknown coordinate

system which gives a Tchebychev net on (!R2, g). Let us consider (ux, u2) as

unknown functions of (xi, X2). Then, the equations V_a, 3^7 = 0, / / j, can
dx1

be simplified to obtain Servants' equation

du' ^ „    , ,duk 3ue      . .     ,   _

(3-D dxW+ZnAu^^^O-,        1-1.2.
k,l=\

Conversely (3.1) implies that V^^j = 0 if i ^ j. In particular, || ^7 \\g
dx1

is constant along the integral curves of -^ for i ^ j. For later use let yl =
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x1 + x2 and y2 = x1 - x2 and rewrite (3.1) as:

<9V        d2ul       <X    i duK due     duK due

d(y1)2     d(y2)2+ ^    k<eW{dyxdyx     dy2 dy2'~   '
(3.2) kJ=X

1 = 1,2.

4. Main theorem

Theorem 4.1. Suppose that (SR2, g) is complete and that =f- < js_ xdA and

Js+KdA<j. Then (SR2, g) admits a Tchebychev net.

In the remainder of the paper we will prove this theorem. We will borrow

a construction due to Ladyzhenskaya and Shubov [LS84] to prove the global

existence of a solution to Servants' equations. Then we show that under the

hypothesis in Theorem 4.1 this solution corresponds to a global Tchebychev

net.

5. Proof of the main theorem

5.1. Geodesies of (SR2, g). The plan is to prove that equation (3.2) admits a
solution such that the line y2 = 0 gets mapped onto a geodesic and such that

■Aj is orthogonal to this geodesic. This allows us to relate the integral of the

Gauss curvature to the angle between -^ and -^ .

Throughout this section we assume the following:

(A) I?< /   KdA< f KdA<^.
1      Js- Js+ l

We first show that a geodesic of (SR2, g) is closed as a subset of SR2 and hence

separates SR2 into two connected components. Let p denote the topological
metric induced by g.

Lemma 5.1. Suppose that o : SR -» SR2 is a geodesic. Then p(o(0), o(t)) is

strictly increasing for t > 0. Moreover, a does not intersect itself and a(t) -» oo

as \t\ -* oo. In particular, all nontrivial geodesies seperate SR2 into two connected
components.

Proof. Let e > 0 be such that =f- + e < /5_ k dA < /5+ k dA < f - e . Let
us fix t > 0, and let p be a geodesic of shortest length joining ff(0) to o(t).
Consider the interior angle 8 (> 0) at a(t) between p and a. From the

Gauss Bonnet theorem it follows that 8 < n/2 - e . Let 8 > 0 be arbitrarily
small. Let us consider a point p on p close to o(t), and join p to a(x) for

t e (t-8 ,t) by the unique shortest geodesic. Now, by using the formula for
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the first variation of arclength,

(d/dx){p(p,o(t))-p(p,o(x))}\x = t = -cos(8).

Therefore, by using the triangle inequality,

{p(o(0),o(t))-p(o(0),o(x))}/(t-x)  >  (l/2)sin(e);

x e (t - 8, t), and 8 is small enough.

Therefore, it follows that p(o(0), cr(t)) > (1/2) sin(e)(t) for arbitrary t > 0.

Now, the conclusions of the lemma follows at once.   □

5.2. Existence  and  uniqueness  of solutions  of  (3.2). We  fix  a  nontrivial

geodesic a : SR -> SR2 and parameterize it by arclength t. The component
of SR2\er such that b(t) and the unit inward normal to the component at a(t)

are positively oriented will be called the component above a (denoted by SR+),

and the other component is said to be below a (and denoted by SR_). We will

specify initial data for ux, u2 on a as follows:

u(yx,0) = o(yx).

■§fi(yx ,0) is the unit normal to a (with respect to g) pointing into SR+ .

We will prove the existence of a unique C°° solution in SR+ . This proof

follows along the ideas of Ladyzhenskaya and Shubov in [LS84].

For b > 0 let

Db = {(yx,y2)eK2:0<y2<b-\yx\}.

The base of Db is {(y1, 0) e SR2 : -b < y1 < b} on which Cauchy data
has been specified for Servants' equations. We will show that there is a unique

smooth solution on Db for all b > 0. It then follows that there exists a unique
smooth solution (y1, y2) i-> u(yx, y2): SR2 —► SR2 . We will then use assumption

(A) to show that this mapping is a diffeomorphism onto SR2, which completes

the proof of the main theorem.
In order to carry out this procedure it becomes convenient to work with

a metric g such that u i-> T' K(u) has bounded partial derivatives. This is

done by modifying the metric g outside of a compact set in SR2 . Since for a

solution (y1, y2) >-> u(yx, y2), || -^ \g= 1 and the base of Db is mapped by

the geodesic a, it follows that u(Db) is contained in 5(i+v^)i(o'(0)), the ball of

radius (1 + V2)b around ct(0) with respect to the topological metric induced

by g. Thus, any modification of g outside of B(i+y/2)b(a(Q)) wm< not affect

the solution, u, on Db . Therefore, without any loss of genarality we assume

that the metric coefficients of g with respect to the w-coordinate system are

constant outside of Rn+^2\b(a(^)) •

Let T > (1 + V2)b, and define u(yx, 0) = o(yx) for y1 € [-b,b].
Extend u(yx, 0) to y1 € [-T, T] smoothly such that u(-T, 0) = u(T, 0)
(in what follows we will see that the choice of the extension does not influence

the solution of the Servants' equations on Db).
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Define JjHy1, 0) for y1 e [-b, b] such that ^ and g|y are unit vectors

on m([-7\ T], 0), and make angles | and ^ with a on <t[-6, 6]. Extend

^(y1, 0) smoothly to [-T, T] such that §,(-T, 0) = $(T, 0).

Let a > b, and let C(r,a) := {(y1, y2) € SR2 : y1 G [-7\ T]; y2 G [0, a]} .
Consider C(T,a) as thecylinder STx[0, a], where SY := [-7\ T]/{-T, T}).

We will show that Servants' equations admit a smooth solution u on C(p,a)

(this means that m is 2r-periodic with respect to the y1-variable), which sat-

isfies specified boundary conditions.
For positive integers s let HT denote the Sobolev space on Sp,

HT = Iv g L2(ST): f \-^v(8)\2d8<oo, k = 0,...,s\.

The notation || v \\s denotes the usual norm

(££i|>i^)'/!.

Let {c0K(8)}kL_oo denote the orthogonal basis of HT,

cok(6) = ifcos^),       k<o[
Ifsin(^),       k>0.

We will find a sequence of functions on C(T,a) >

N

(5.1) uiN(yx,y2)=  22 4,N(y2)c>k(yl),        1 = 1,2, tV=1,2,...,

k=-N

such that for each tV ,

It \[d$T2 - aw]uiN{y) ~ £ rU("*(v))
^ k,m=\

,<^ \dukNdu>»     dukNdu%]\    ,   ,       ,

L J ,1

l = -N,... ,N- , y2e[0,a].

Equation (5.2) yields a system of (4tV + 2) second-order ordinary differential

equations for {a'k N(y2)}k€{-N,... ,n}> ' = 1.2 (Note that the nonlinear term

I-t rjt m(Mv(y))<yfc(yl)rfy1 is to be considered as a function of a'k N which

makes the system of equations nonlinear and coupled with each other.)

We specify the boundary conditions

4,at(0)= /   ui(yx,0)cok(yx)dyx,

(5-3) J~l     .
(d/dy2)(altN)(0) = j   |^(y', 0)cok(yx)dyx.
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We will show that {u'N(yx, y2)} contains a subsequence which converges to

a smooth function {u'^y1, y2)} on C^,a), and that ux satisfies Servants'

equations on C(p,a), for the modified metric.

For convenience, replace u'N by u', un by u, yx by 8, and y2 by t. Let

,*as  rvi/ n        i      4^ w    / ,fduedum     8ue dum\ .   _
(5.4) *(„) := u< + £ n,M(«) (^^ - ^^j ,        , = 1,2,

and S(«) := ($'("), 32(w))- Then (5.2) can be rewritten as

(5.5) f   [(®ui)-5si(u)]cok(8)d8 = 0,

where © = [(|£ - ^) + 1]. Using (5.1) , (5.2), and (5.5) we may write

(5.6)

/   {(®u')u't + (®u't)u'tt + (®u'g)ugt

+ (®uu)u\„ + (®u\g)u\tg + (meg)ugg,}d8

= j_Tmu)u\ + (§-t&(u))u>t + (jQ&(u))ugt

+ (|ia<(M))i4 + (q% v(u))u'ggt + (^3'(M)K„} dd,

i =1,2.

Let

Z(0 := £ [T {("')2 + 2("<)2 + 2(*4)22(*4)2

+2(u\t)2 + 2(ugg)2 + (u\tt)2 + (u'geg)2

+3(ugt)2 + 2(u\ee)2 + 2(u<ig)2}d8.

By repeated application of the integration by parts formula JT  vgw dd  =

— fT   vwg d8 , for and C1   functions v , w  defined on the circle, we could

simplify each term in the left-hand side of (5.6) to look like JT  vvt dd . Now
we observe that the sum of the left-hand sides of (5.6) for 7 = 1,2 is

Since {Y'. k} axe constants outside of a compact set, it follows that the right-

hand side of (5.6) is bounded by c(Z(t) + Zi(t)) for some c > 0, which
depends only on the bounds on the partial derivatives of {Tj k(u)} with respect

to ux and u2, and hence independent of N. Therefore we have

(5.7) ^-Z(t)<c{Z(t) + Z\t)}.
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Since Z(0) < k, for some k which is independent of N also, it follows that

there exists x > 0 such that Z(t) exists for t € [0, x] and remains bounded.

Now from the Sobolev embedding lemma, it follows that a subsequence of {u^}

converges to some u^ e C2(C(j-;T)). Since (© - 3): C2(C(T,t)) -* C°(C(t,t))
is continuous, it follows that w^ satisfies Servants'equations on C(T,X)-

Since the solution u is such that || ^- ||= 1, and since the metric coefficients

gij(u) axe bounded on SR2 , it follows that there exists an a priori constant p > 0

such that ||%H| < p, i = 1, 2, on C(p,t). and p does not depend on t. From

the equation (3.1) it follows that (after possibly redefining p to be a larger

constant) | ^f- \< p on C^,t) (We have used the fact that gij are constant

outside of a compact set here.) Also, the same conclusion holds for u„ for large
enough n .

We claim that there exists a continuous function n : [0, oo) —► SR (indepen-

dant of t) such that \yri\  <   n(y2) on C(r>T). Let us define X,   = d/dx',

i = 1,2, where (x1, x2) = (l/2)(yl + y2, yx - y2) (as defined in section 3).

Since VXlX2 = 0 and [Xx, X2] = 0, it follows that

Vxyx2X2 = R(XX,X2)X2,

where R is the curvature tensor of the Riemannian metric g. Since gij are

constant outside of a compact set, it follows that there exists a constant c > 0

such that \(R(p, q)r, s)\ < c for all unit tanget vectors p, q, r, s at an
arbitrary point in SR2. Therefore,

\LXl\\VX2X2\\2g\  = 2\(VX2X2,R(XX,X2)X2)\

< 2c\\VX2X2\\g.

Therefore, we have

\\Vx2X2(yx,y2)\\g <Ac(y2) + d

where d = max{||Vx2X2(yx, 0)\\g \yx   G  [-b, b]} .

Let us now write Vx2X2 in terms of local coordinate expressions:

V    X y    d2ul    d ^    dul  duJ   k   d

*2 2 "  ^d^you1       ^   dx2 dx2 ijduk'
'=1,2 i,j,k=\

It now follows that there exists a constant dx > 0 such that

^oVcWd*    ^4ct + d + dx>
i=i g

and the constants c, d, dx axe independent of x. A similar bound holds for

II Z);=i afccTpw^g ■ Since gtj are constant outside of a compact set, the claim
follows immediately.

Since the right-hand side of (5.6) depends linearly on third order derivatives,

and since we have established bounds for first and second derivatives, it follows

that there exists a continuous function /? : [0, oo) -> SR, such that for large
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enough N, un satisfies

(5.8) j-fZ(t)<B(t)(Z(t) + l).

Hence it follows that the domain of definition of a C2 solution is arbitrary:

i.e., Moo G C2(C(r,())Vr >0.

In particular, we have found a C2 solution to Servants' equations on C(T, b) •

Since the method we used to obtain bounds is applicable for higher order deriva-

tives also, by using a diagonal process if necessary, we obtain a C°° solution

to Servants' equations, u G C°°(C(T,oo)) •
Now we have completed the proof of the existence of a C°°-solution of (3.2)

on Db satisfying the specified boundary conditions.

We will now show that this solution is unique. If {u'}i=Xt2 and {tt'}i=x>2

are two solutions on Db, then the difference p' = u' - tt' satisfies the linear

equation

(JL_°L.) p} = dUy)^-+W(yW
\d(yx)2     d(y2)2)^      aJ[y)dyJ+^[y),i

where p'(0, y2) = 0 and Cr(0, y2) = 0 where d'j and *?' are C°° functions

on Db . Then it follows easily that p' = 0 on Db . Thus u' is unique on Db .

Hence the solutions on {Db}o<b«x> piece together to give a C°°-solution of

(3.2) on SR+ (and similarly on SR2) for the original metric subject to specified
boundary conditions.

5.3. Existence of Tchebychev nets. Now let Db be a triangle such that u: Db —>

SR2 is a diffeomorphism into Jt2 .

Let Ab denote u(Db) and

Pi = cr([-b, b]),

fi2 = u({(b-8, 8):0<8<b}),

Pi = u({(-b + 8, 8):0<8<b}),

px = u(0, b),

p2 = u(-b, 0),

/?3 = u(b,0).

Now g|r is parallel along px U p2 and -^ is parallel along px U p$.

Let y = angle between -^ and -^ at px.

Then it follows that

y = /   KdA + ^-.
JAb 1-

By assumption (A), Be > 0 9 Jv k dA e (=j- + e, f - e) for all measurable

sets V. Hence we conclude that y e (e , it - e). Clearly, this conclusion holds

for the angle between d/dxx and d/dx2 at all points in Ab .

Now suppose that u : SR2 -> SR2 is not a diffeomorphism. Then, increase b
until u \ob is not a diffeomorphism. Let b0 be the smallest such value. Then

there exist p2, p3 G dDb such that u(p2) = u(p3). Let <?,  = «(p,) , i = 1, 2.
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Without loss of generality we may assume that #3 g Pi\{pi, p2}. Let 8 and

8 be the angle between £? and -^ at q2 and q?,, respectively.
In what follows, by a fiber triangle we mean the image under u ofa triangle

in the y-plane with its base on the yi-axis, and its sides with slopes +1 and
-1.

Case 1: q2 e pi. Let Rx be the region enclosed by the segment of p^ which

lies betwen #3 and q2. By computing holonomy along d A we conclude that

n - 8 + 8 =   [ KdA G (-n/2-e,n/2-e).

Let R2 and i?3 be the fiber triangles of which two vertices are p2, qj and
Pi, q2 respectively. Then

8= f KdA + \,    8= [ KdA + \.
JR2 2 JRi 2

Therefore,

/        tcdA = -n +      KdA < -n/2 - e
JRi-R2 JRi

which contradicts our assumption on the bounds on the integral of the Gauss

curvature over arbitrary subsets.

\ \ M3 \ M2 \    vJ«2\ Y2

Pi   \ ?2j/ \ / \

P2 Hi P3 p2 Ui p3

Case 2: q2 g p2. Let Rx be the region enclosed by the segment of p^ which
lies between q3 and px, and the segment of p2 which lies between px and

q2 . By computing holonomy along dA we conclude that

2n+y-8-8=   I KdA G (-n/2 + e , ti/2-e).

Define R2 and R3 as in Case 1, and by an argument similar to Case 1 we
observe that

/        KdA > n + 2e.
JR3+R2

This is a contradiction.
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Thus, we conclude that u : [0, oo) x SR —> SR2 is a diffeomorphism into

SR2. A similar construction for the lower half plane allows us to extend u to

u : SR2 —► SR2 , a diffeomorphism into SR2.

We now prove that u is onto. Let W = w(SR2). First note that from the above

that the counterclockwise angle between -^ and ^ (call it y) is in (e , n-e).

Let g denote the Riemannian metric (dx1)2 + 2cosydxxdx2 + (dx2)2 .

Then u : SR2 -> W is an isometry, when SR2 is endowed with g and W is

endowed with g.
In order to show that W = SR2, it suffices to show that if X : [0, oo] -> SR2

is a smooth curve of infinite euclidean length, then it has infinite length with

respect to g as well. But this follows since

ni/.\n-       LdXx.~    ,912,1    -        dXx dX2
II m || g = ^)2 + (—)2 + 2cosy^^f

> ii x(t) \\2 vTiHTc^Ti)
>||A(0||2 V(l-sin(c))

where || X(t) \\2 denotes the Euclidean length of X(t). This concludes the proof

of the main theorem.
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