Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Convexity of the ideal boundary for complete open surfaces

Author: Jin-Whan Yim
Journal: Trans. Amer. Math. Soc. 347 (1995), 687-700
MSC: Primary 53C20; Secondary 53C45
MathSciNet review: 1243176
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For complete open surfaces admitting total curvature, we define several kinds of convexity for the ideal boundary, and provide examples of each of them. We also prove that a surface with most strongly convex ideal boundary is in fact a generalization of a Hadamard manifold in the sense that the ideal boundary consists entirely of Busemann functions.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20, 53C45

Retrieve articles in all journals with MSC: 53C20, 53C45

Additional Information

PII: S 0002-9947(1995)1243176-1
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia