Random quadratic forms
Authors:
John Gregory and H. R. Hughes
Journal:
Trans. Amer. Math. Soc. 347 (1995), 709717
MSC:
Primary 47B80; Secondary 34B24, 34C10, 34F05
MathSciNet review:
1254841
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The results of Boyce for random SturmLiouville problems are generalized to random quadratic forms. Order relationships are proved between the means of eigenvalues of a random quadratic form and the eigenvalues of an associated mean quadratic form. Finitedimensional and infinitedimensional examples that show these are the best possible results are given. Also included are some results for a general approximation theory for random quadratic forms.
 [1]
William
E. Boyce, Random eigenvalue problems, Probabilistic Methods in
Applied Mathematics, Vol. 1, Academic Press, New York, 1968,
pp. 1–73. MR 0263171
(41 #7776)
 [2]
William
E. Boyce, On a conjecture concerning the means of the eigenvalues
of random SturmLiouville boundary value problems, Quart. Appl. Math.
38 (1980/81), no. 2, 241–245. MR 580882
(81i:34016)
 [3]
R.
Courant and D.
Hilbert, Methods of mathematical physics. Vol. I, Interscience
Publishers, Inc., New York, N.Y., 1953. MR 0065391
(16,426a)
 [4]
John
Gregory, An approximation theory for elliptic quadratic forms on
Hilbert spaces: Application to the eigenvalue problem for compact quadratic
forms, Pacific J. Math. 37 (1971), 383–395. MR 0303311
(46 #2449)
 [5]
John
Gregory, Quadratic form theory and differential equations,
Mathematics in Science and Engineering, vol. 152, Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], New York, 1980. MR 599362
(82d:49001)
 [6]
Magnus
R. Hestenes, Applications of the theory of quadratic forms in
Hilbert space to the calculus of variations, Pacific J. Math.
1 (1951), 525–581. MR 0046590
(13,759a)
 [7]
Kurt
Kreith, Lower estimates for zeros of
stochastic SturmLiouville problems, Proc.
Amer. Math. Soc. 92 (1984), no. 4, 515–518. MR 760936
(86c:34115), http://dx.doi.org/10.1090/S0002993919840760936X
 [1]
 W. E. Boyce, Random eigenvalue problems, Probabilistic Methods in Applied Mathematics (A. T. BharuchaReid, ed.), Academic Press, New York, 1968, pp. 173. MR 0263171 (41:7776)
 [2]
 , On a conjecture concerning the means of the eigenvalues of random SturmLiouville boundary value problems, Quart. Appl. Math. 38 (1980), 241245. MR 580882 (81i:34016)
 [3]
 R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, Interscience, New York, 1953. MR 0065391 (16:426a)
 [4]
 J. Gregory, An approximation theory for elliptic quadratic forms on Hilbert spaces: application to the eigenvalue problem for compact quadratic forms, Pacific J. Math. 37 (1970), 383395. MR 0303311 (46:2449)
 [5]
 , Quadratic form theory and differential equations, Math. Sci. Engr., vol. 152, Academic Press, San Diego, CA, 1980. MR 599362 (82d:49001)
 [6]
 M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space in the calculus of variations, Pacific J. Math. 1 (1951), 525582. MR 0046590 (13:759a)
 [7]
 K. Kreith, Lower estimates for zeros of stochastic SturmLiouville problems, Proc. Amer. Math. Soc. 92 (1984), 515518. MR 760936 (86c:34115)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
47B80,
34B24,
34C10,
34F05
Retrieve articles in all journals
with MSC:
47B80,
34B24,
34C10,
34F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199512548414
PII:
S 00029947(1995)12548414
Keywords:
SturmLiouville problem,
random eigenvalues,
continuity of eigenvalues
Article copyright:
© Copyright 1995 American Mathematical Society
