Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables


Authors: Patrick Ahern and Jean-Pierre Rosay
Journal: Trans. Amer. Math. Soc. 347 (1995), 543-572
MSC: Primary 30D05; Secondary 26A18, 26E05, 34A20
DOI: https://doi.org/10.1090/S0002-9947-1995-1276933-6
MathSciNet review: 1276933
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a survey and some (hopefully) new facts on germs of maps tangent to the identity (in $ \mathbb{R},\mathbb{C},$ or $ {\mathbb{R}^2}$), (maps $ f$ defined near 0, such that $ f(0) = 0$, and $ f'(0)$ is the identity). Proofs are mostly original.

The paper is mostly oriented towards precise examples and the questions of descriptions of members in the conjugacy class, flows, $ k$th root.

It happened that entire functions provide clear and easy examples. However they should be considered just as a tool, not as the main topic. For example in Proposition $ 2$ the function $ z \mapsto z + {z^2}$ should be better thought of as the map $ (x,y) \to (x + {x^2} - {y^2},y + 2xy)$.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121-163. MR 0097532 (20:4000)
  • [2] -, Permutable power series and regular iteration, J. Austral. Math. Soc. 2 (1962), 265-294. MR 0140666 (25:4082)
  • [3] -, Fractional iteration near a fixpoint of multiplier $ 1$, J. Austral. Math. Soc. 4 (1964), 143-151. MR 0165080 (29:2369)
  • [4] -, Non embeddable functions with a fixpoint of multiplier $ 1$, Math. Z. 99 (1967), 377-384. MR 0215966 (35:6801)
  • [5] H. Cartan, Les fonctions analytiques de deux variables et le problème de la représentation analytique, J. Math. Pures Appl. 10 (1931), 1-14.
  • [6] J. Ecalle, Les fonctions résurgentes et leurs applications, Publ. Math. Orsay.
  • [7] P. Fatou, Sur les equations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271. MR 1504787
  • [8] M. W. Hirsch and S. Smale, Differential equations, and liner algebra, Academic Press, 1974.
  • [9] Y. S. Il'yashenko, Nonlinear Stokes phenomena, Adv. in Soviet Math., vol. 14, Amer. Math. Soc., Providence, RI, 1993. MR 1206039 (93i:32002)
  • [10] S. Kobayaski, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970. MR 0277770 (43:3503)
  • [11] N. Kopell, Commuting diffeomorphisms, Global Analysis, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, RI, 1970, pp. 165-185. MR 0270396 (42:5285)
  • [12] L. S. O. Liverpool, Fractional iteration near a fixed point of multiplier $ 1$, J. London Math. Soc. (2) 9 (1975), 599-609. MR 0364611 (51:865)
  • [13] B. Malgrange, Travaux d'Ecalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire, Bourbaki no. 582, 1981/82.
  • [14] J. Robbin, Unfolding of discrete dynamical systems, Ergodic Theory Dynamical Systems 4 (1984), 421-486. MR 776878 (87a:58117)
  • [15] J. P. Rosay and W. Rudin, Holomorphic maps from $ {\mathbb{C}^n}$ to $ {\mathbb{C}^n}$, Trans. Amer. Math. Soc. 310 (1988), 47-86. MR 929658 (89d:32058)
  • [16] S. Saks and A. Zygmund, Analytic functions, 3rd ed., PWN, Warsaw, 1971. MR 0349963 (50:2456)
  • [17] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253-275. MR 0474327 (57:13973)
  • [18] C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612. MR 0007044 (4:76c)
  • [19] S. Sternberg, Local $ {C^n}$ transformations of the real line, Duke Math. J. 24 (1957), 97-102. MR 0102581 (21:1371)
  • [20] -, Local contractions and a theorem of Poincare, Amer. Math. J. 79 (1957), 809-824. MR 0096853 (20:3335)
  • [21] G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258. MR 0107016 (21:5744)
  • [22] -, Fractional iteration of entire and rational functions, J. Austral. Math. Soc. 4 (1964), 129-142. MR 0165079 (29:2368)
  • [23] F. Takens, Normal forms for certain singularities of vector fields, Ann. Inst. Fourier (Grenoble) 23 (1973), 163-195. MR 0365620 (51:1872)
  • [24] S. M. Voronin, Analytic classification of germs of conformal mappings $ (\mathbb{C},0) \to (\mathbb{C},0)$ with identity linear part, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1-17. MR 609790 (82h:58008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D05, 26A18, 26E05, 34A20

Retrieve articles in all journals with MSC: 30D05, 26A18, 26E05, 34A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1276933-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society