Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Diophantine approximation in $ {\bf R}\sp n$


Author: L. Ya. Vulakh
Journal: Trans. Amer. Math. Soc. 347 (1995), 573-585
MSC: Primary 11J06
DOI: https://doi.org/10.1090/S0002-9947-1995-1276937-3
MathSciNet review: 1276937
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A modification of the Ford geometric approach to the problem of approximation of irrational real numbers by rational fractions is developed. It is applied to find an upper bound for the Hurwitz constant for a discrete group acting in a hyperbolic space. A generalized Khinchine's approximation theorem is also given.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Möbius transformations and Clifford numbers, Differential Geometry and Complex Analysis, H. E. Rauch memorial volume, Springer-Verlag, Berlin, 1985. MR 780036 (86g:20065)
  • [2] -, On the fixed points of Möbius transformations in $ {\hat R^n}$, Ann. Acad. Sci. Fenn. A I Math. 10 (1985), 15-27. MR 802464 (87c:20086)
  • [3] B. N. Apanasov, Discrete groups in space and uniformization problems, Kluwer Academic, Dordrecht, Boston, and London, 1991. MR 1191903 (93h:57026)
  • [4] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983. MR 698777 (85d:22026)
  • [5] A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12. MR 0333164 (48:11489)
  • [6] N. Bourbaki, Algèbre, Chapitre IX: Formes sesquilinéaires et formes quadratiques, Hermann, Paris, 1959.
  • [7] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Springer-Verlag, New York and Berlin, 1988. MR 920369 (89a:11067)
  • [8] J. Elstrodt, F. Grunewald, and J. Mennicke, Vahlen's group of Clifford matrices and Spingroups, Math. Z. 196 (1987), 369-390. MR 913663 (89b:11031)
  • [9] -, Arithmetic applications of the lattice point theorem, Proc. London Math. Soc. (3) 57 (1988), 239-283. MR 950591 (89g:11033)
  • [10] -, Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math. 101 (1990), 641-687. MR 1062799 (91j:11038)
  • [11] J. Dieudonné, La géométrie des groupes classiques, Springer, Berlin, 1971.
  • [12] L. R. Ford, A geometric proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35 (1917), 59-65.
  • [13] A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups, J. London Math. Soc. (2) 34 (1986), 219-234. MR 856507 (87m:11060)
  • [14] A. Hurwitz, Über die angenaherte Darstellungen der Irrationalzahlen durch rationale Brüche, Math. Ann. 39 (1891), 279-284. MR 1510702
  • [15] J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117-127. MR 819833 (87e:11079)
  • [16] -, The local Hurwitz constant and Diophantine approximation on Hecke groups, Math. Comp. 192 (1990), 765-781. MR 1035937 (91c:11036)
  • [17] H. Maass, Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen, Abh. Math. Sem. Univ. Hamburg 16 (1949), 72-100. MR 0033317 (11:421c)
  • [18] C. Maclachlan, P. L. Waterman, and N. J. Weilenberg, Higher dimensional analogues of the modular and Picard groups, Trans. Amer. Math. Soc. 312 (1989), 739-753. MR 965301 (90b:11039)
  • [19] W. Magnus, Noneuclidean tessellations and their groups, Academic Press, New York and London, 1974. MR 0352287 (50:4774)
  • [20] P. J. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Note Ser. 143, Cambridge Univ. Press, 1989. MR 1041575 (91i:58104)
  • [21] Asmus L. Schmidt, Farey simplices in the space of quaternions, Math. Scand. 24 (1969), 31-65. MR 0253993 (40:7206)
  • [22] A. Speiser, über die Minima Hermitescher Formen, J. Reine Angew. Math. 167 (1932), 88-97.
  • [23] D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and logarithm law for geodesics, Acta Math. 149 (1982), 215-237. MR 688349 (84j:58097)
  • [24] R. Vahlen, Über Bevegungen und complex Zahlen, Math. Ann. 55 (1902), 589-593.
  • [25] L. Ya. Vulakh, Higher dimensional analogues of Fuchsian subgroups of $ PSL(2,\mathfrak{o})$, Trans. Amer. Math. Soc. 337 (1993), 947-963. MR 1145965 (93h:20055)
  • [26] -, On Hurwitz constants for Fuchsian groups, preprint.
  • [27] -, Diophantine approximation on Bianchi groups, J. Number Theory (to appear). MR 1352637 (96g:11076)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11J06

Retrieve articles in all journals with MSC: 11J06


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1276937-3
Keywords: Diophantine approximation, Clifford algebra, hyperbolic geometry
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society