Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the tangential interpolation problem for $ H\sb 2$ functions


Authors: Daniel Alpay, Vladimir Bolotnikov and Yossi Peretz
Journal: Trans. Amer. Math. Soc. 347 (1995), 675-686
MSC: Primary 47A57; Secondary 30E05, 46E22
MathSciNet review: 1277087
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to solve a matrix-valued version of the Nevanlinna-Pick interpolation problem for $ {H_2}$ functions. We reduce this problem to a Nevanlinna-Pick interpolation problem for Schur functions and obtain a linear fractional transformation which describes the set of all solutions.


References [Enhancements On Off] (What's this?)

  • [1] D. Alpay and V. Bolotnikov, Two-sided Nevanlinna-Pick interpolation for a class of matrix-valued functions, Z. Anal. Anwendungen 12 (1993), no. 2, 211–238. MR 1245916
  • [2] Daniel Alpay, Patrick Dewilde, and Harry Dym, On the existence and construction of solutions to the partial lossless inverse scattering problem with applications to estimation theory, IEEE Trans. Inform. Theory 35 (1989), no. 6, 1184–1205. MR 1036623, 10.1109/18.45275
  • [3] Daniel Alpay and Harry Dym, On reproducing kernel spaces, the Schur algorithm, and interpolation in a general class of domains, Operator theory and complex analysis (Sapporo, 1991) Oper. Theory Adv. Appl., vol. 59, Birkhäuser, Basel, 1992, pp. 30–77. MR 1246809
  • [4] T. Ando, De Branges spaces and analytic operator functions, Lecture notes, Hokkaido University, Sapporo, 1990.
  • [5] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 0051437, 10.1090/S0002-9947-1950-0051437-7
  • [6] T. Ya. Azizov and I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, “Nauka”, Moscow, 1986 (Russian). MR 863885
  • [7] Joseph A. Ball, Israel Gohberg, and Leiba Rodman, Interpolation of rational matrix functions, Operator Theory: Advances and Applications, vol. 45, Birkhäuser Verlag, Basel, 1990. MR 1083145
  • [8] Joseph A. Ball and J. William Helton, A Beurling-Lax theorem for the Lie group 𝑈(𝑚,𝑛) which contains most classical interpolation theory, J. Operator Theory 9 (1983), no. 1, 107–142. MR 695942
  • [9] P. L. Duren and D. L. Williams, Interpolation problems in function spaces, J. Functional Analysis 9 (1972), 75–86. MR 0291787
  • [10] Harry Dym, 𝐽 contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1004239
  • [11] I. Fedchina, A criterion for the solvability of the tangential Nevanlinna-Pick problem, Dokl. Akad. Nauk. Armyan. SSR 26 (1972), 213-227.
  • [12] I. P. Fedčina, A description of the solutions of the Nevanlinna-Pick tangent problem, Akad. Nauk Armjan. SSR Dokl. 60 (1975), no. 1, 37–42 (Russian, with Armenian summary). MR 0385104
  • [13] Dušan R. Georgijević, On operator valued multiple interpolation, Complex analysis and applications ’87 (Varna, 1987) Publ. House Bulgar. Acad. Sci., Sofia, 1989, pp. 176–184. MR 1127632
  • [14] M. G. Kreĭn and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume Π_{𝜅}, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970) North-Holland, Amsterdam, 1972, pp. 353–399. Colloq. Math. Soc. János Bolyai, 5 (German). MR 0423122
  • [15] M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish; Translations of Mathematical Monographs, Vol. 50. MR 0458081
  • [16] Herbert Meschkowski, Hilbertsche Räume mit Kernfunktion, Die Grundlehren der mathematischen Wissenschaften, Bd. 113, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962 (German). MR 0140912
  • [17] Stephen Parrott, On a quotient norm and the Sz.-Nagy - Foiaş lifting theorem, J. Funct. Anal. 30 (1978), no. 3, 311–328. MR 518338, 10.1016/0022-1236(78)90060-5
  • [18] Marvin Rosenblum, A corona theorem for countably many functions, Integral Equations Operator Theory 3 (1980), no. 1, 125–137. MR 570865, 10.1007/BF01682874
  • [19] Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
  • [20] Saburou Saitoh, Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, vol. 189, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 983117
  • [21] Donald Sarason, Generalized interpolation in 𝐻^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 0208383, 10.1090/S0002-9947-1967-0208383-8
  • [22] Donald Sarason, Shift-invariant spaces from the Brangesian point of view, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 153–166. MR 875239, 10.1090/surv/021/13
  • [23] -, Exposed points in $ {H^1}$. I, Oper. Theory: Adv. Appl., vol. 41, Birkhäuser-Verlag, Basel, 1989, pp. 485-496.
  • [24] -, Exposed points in $ {H^1}$. II, Oper. Theory: Adv. Appl., vol. 48, Birkhäuser-Verlag, Basel, 1990, pp. 333-347.
  • [25] -, Function theory and de Branges spaces, Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 495-501.
  • [26] Laurent Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115–256 (French). MR 0179587

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A57, 30E05, 46E22

Retrieve articles in all journals with MSC: 47A57, 30E05, 46E22


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1277087-2
Article copyright: © Copyright 1995 American Mathematical Society