Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the tangential interpolation problem for $ H\sb 2$ functions


Authors: Daniel Alpay, Vladimir Bolotnikov and Yossi Peretz
Journal: Trans. Amer. Math. Soc. 347 (1995), 675-686
MSC: Primary 47A57; Secondary 30E05, 46E22
DOI: https://doi.org/10.1090/S0002-9947-1995-1277087-2
MathSciNet review: 1277087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to solve a matrix-valued version of the Nevanlinna-Pick interpolation problem for $ {H_2}$ functions. We reduce this problem to a Nevanlinna-Pick interpolation problem for Schur functions and obtain a linear fractional transformation which describes the set of all solutions.


References [Enhancements On Off] (What's this?)

  • [1] D. Alpay and V. Bolotnikov, Two sided Nevanlinna-Pick interpolation for a class of matrix-valued functions, Z. Anal. Anwendungen 12 (1993), 211-238. MR 1245916 (95d:47010)
  • [2] D. Alpay, P. Dewilde, and H. Dym, On the existence and construction of solutions to the partial lossless inverse scattering problem with applications to estimation theory, IEEE Trans. Inform. Theory 35 (1989), 1184-1205. MR 1036623 (91k:94003)
  • [3] D. Alpay and H. Dym, On reproducing kernel spaces, the Schur algorithm and interpolation in a general class of domains, Oper. Theory: Adv. Appl., vol. 50, Birkhäuser- Verlag, Basel, 1992, pp. 30-77. MR 1246809 (94j:46034)
  • [4] T. Ando, De Branges spaces and analytic operator functions, Lecture notes, Hokkaido University, Sapporo, 1990.
  • [5] N. Aronszjan, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 0051437 (14:479c)
  • [6] T. Ya. Azizov and I. S. Iohvidov, Foundations of the theory of linear operators in spaces with indefinite metric, Nauka, Moscow, 1986; English transl., Linear operators in spaces with an indefinite metric, Wiley, New York, 1989. MR 863885 (88g:47070)
  • [7] J. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions, Birkhäuser-Verlag, Basel, 1990. MR 1083145 (92m:47027)
  • [8] J. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group $ U(m,n)$ which contains most classical interpolation, J. Operator Theory 8 (1983), 107-142. MR 695942 (84m:47046)
  • [9] P. L. Duren and D. L. Williams, Interpolation problems in function spaces, J. Funct. Anal. 9 (1972), 75-86. MR 0291787 (45:878)
  • [10] H. Dym, $ J$-contractive matrix functions, reproducing kernel spaces and interpolation, CBMS Lecture Notes, vol. 7, Amer. Math. Soc., Providence, RI, 1989. MR 1004239 (90g:47003)
  • [11] I. Fedchina, A criterion for the solvability of the tangential Nevanlinna-Pick problem, Dokl. Akad. Nauk. Armyan. SSR 26 (1972), 213-227.
  • [12] -, Description of solutions of the tangential Nevanlinna-Pick problem, Dokl. Akad. Nauk. Armyan. SSR 60 (1975), 37-42. MR 0385104 (52:5974)
  • [13] D. Georgijevic, On operator valued multiple interpolation, Complex Analysis and Applications, Sophia, 1989, pp. 176-184. MR 1127632 (92h:47018)
  • [14] M. G. Kreĭn and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume $ {\Pi _k}$, Hilbert Space Operators and Operator Algebras (Proc. Internat. Conf. Tihany, 1970), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1972, pp. 353-399. MR 0423122 (54:11103)
  • [15] M. G. Kreĭn and A. A. Nudelman, The Markov moment problem and extremal problems, Transl. Math. Monographs, vol. 50, Amer. Math. Soc., Providence, RI, 1977. MR 0458081 (56:16284)
  • [16] H. Meschkovski, Hilbertsche Raüme mit Kernfunktion, Springer-Verlag, Berlin, 1962. MR 0140912 (25:4326)
  • [17] S. Parrott, On a quotient norm and the Sz-Nagy-Foias lifting theorem, J. Funct. Anal. 30 (1978), 311-328. MR 518338 (81h:47006)
  • [18] M. Rosenblum, A corona theorem for countably many functions, Integral Equations Operator Theory 3 (1980), 125-137. MR 570865 (81e:46034)
  • [19] M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford Univ. Press, London and New York, 1985. MR 822228 (87e:47001)
  • [20] S. Saitoh, Theory of reproducing kernels and its applications, Pitman Res. Notes Math. Ser., vol. 189, Longman Sci. Tech., Harlow, 1988. MR 983117 (90f:46045)
  • [21] D. Sarason, Generalized interpolation in $ {H^\infty }$, Trans. Amer. Math. Soc. 127 (1967), 180-203. MR 0208383 (34:8193)
  • [22] -, Shift-invariant spaces from the brangesian point of view, Proceedings of the Symposium on the Occasion of the Proof of the Bieberbach Conjecture, Math. Surveys Monographs, vol. 21, Amer. Math. Soc., Providence, RI, 1986. MR 875239 (88d:47014a)
  • [23] -, Exposed points in $ {H^1}$. I, Oper. Theory: Adv. Appl., vol. 41, Birkhäuser-Verlag, Basel, 1989, pp. 485-496.
  • [24] -, Exposed points in $ {H^1}$. II, Oper. Theory: Adv. Appl., vol. 48, Birkhäuser-Verlag, Basel, 1990, pp. 333-347.
  • [25] -, Function theory and de Branges spaces, Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 495-501.
  • [26] L. Schwartz, Sous espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115-256. MR 0179587 (31:3835)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A57, 30E05, 46E22

Retrieve articles in all journals with MSC: 47A57, 30E05, 46E22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1277087-2
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society