Epi-derivatives of integral functionals with applications

Authors:
Philip D. Loewen and Harry H. Zheng

Journal:
Trans. Amer. Math. Soc. **347** (1995), 443-459

MSC:
Primary 49J52; Secondary 49K15, 58C20

DOI:
https://doi.org/10.1090/S0002-9947-1995-1282892-2

MathSciNet review:
1282892

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study first- and second-order epi-differentiability for integral functionals defined on , and apply the results to obtain first- and second-order necessary conditions for optimality in free endpoint control problems.

**[1]**H. Attouch,*Variational convergence for functions and operators*, Pitman, Boston, 1984. MR**773850 (86f:49002)****[2]**J. P. Aubin and H. Frankowska,*Set-valued analysis*, Birkháuser, Boston, 1990. MR**1048347 (91d:49001)****[3]**F. H. Clarke,*Optimization and nonsmooth analysis*, Wiley-Interscience, New York, 1983. MR**709590 (85m:49002)****[4]**R. Cominetti,*On pseudo-differentiability*, Trans. Amer. Math. Soc.**324**(1988), 843-865. MR**992605 (91h:26009)****[5]**C. Do,*Generalized second derivatives of convex functions in reflexive Banach spaces*, Trans. Amer. Math. Soc. (to appear). MR**1088019 (93a:49011)****[6]**A. Levy,*Second-order epi-derivatives of integral functionals with fully amenable integrands*, Set-Valued Analysis (to appear). MR**1267204 (95e:49025)****[7]**P. D. Loewen and H. Zheng,*Generalized conjugate points for optimal control problems*, Nonlinear Analysis, Theory Methods & Applications (to appear). MR**1270169 (95d:49037)****[8]**D. Noll,*Second order differentiability of integral functionals on Sobolev spaces and**spaces*, Z. Reine Angew. Math. (to appear). MR**1285832 (95c:49023)****[9]**R. A. Poliquin and R. T. Rockafellar,*A calculus of epi-derivatives with applications to optimization*, Canad. J. Math.**45**(1993), 879-896. MR**1227665 (94d:49023)****[10]**-,*Amenable functions in optimization*, preprint.**[11]**R. T. Rockafellar,*Integral functionals, normal integrands and measurable selections*; in Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math., vol. 543, Springer-Verlag, 1976, pp. 157-207. MR**0512209 (58:23598)****[12]**-,*First- and second-order epi-differentiability in nonlinear programming*, Trans. Amer. Math. Soc.**307**(1988), 75-107. MR**936806 (90a:90216)****[13]**-,*Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives*, Math. Oper. Res.**14**(1989), 462-484. MR**1008425 (91b:49022)****[14]**-,*Proto-differentiability of set-valued mappings and its applications in optimization*, Analyse Non Linéaire (H. Attouch, J.P. Aubin, F. Clarke, I. Ekeland, eds.), 1989, pp. 449-482. MR**1019126 (90k:90140)****[15]**-,*Generalized second derivatives of convex functions and saddle functions*, Trans. Amer. Math. Soc.**320**(1990), 810-822. MR**1031242 (91b:90190)****[16]**-,*Nonsmooth analysis and parametric optimization*, Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math., vol. 1446, Springer-Verlag, 1990, pp. 137-151. MR**1079762 (91i:49016)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
49J52,
49K15,
58C20

Retrieve articles in all journals with MSC: 49J52, 49K15, 58C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1282892-2

Keywords:
Integral functionals,
epiderivative,
epiconvergence

Article copyright:
© Copyright 1995
American Mathematical Society