Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Epi-derivatives of integral functionals with applications

Authors: Philip D. Loewen and Harry H. Zheng
Journal: Trans. Amer. Math. Soc. 347 (1995), 443-459
MSC: Primary 49J52; Secondary 49K15, 58C20
MathSciNet review: 1282892
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study first- and second-order epi-differentiability for integral functionals defined on $ {L^2}[0,T]$, and apply the results to obtain first- and second-order necessary conditions for optimality in free endpoint control problems.

References [Enhancements On Off] (What's this?)

  • [1] H. Attouch, Variational convergence for functions and operators, Pitman, Boston, 1984. MR 773850 (86f:49002)
  • [2] J. P. Aubin and H. Frankowska, Set-valued analysis, Birkháuser, Boston, 1990. MR 1048347 (91d:49001)
  • [3] F. H. Clarke, Optimization and nonsmooth analysis, Wiley-Interscience, New York, 1983. MR 709590 (85m:49002)
  • [4] R. Cominetti, On pseudo-differentiability, Trans. Amer. Math. Soc. 324 (1988), 843-865. MR 992605 (91h:26009)
  • [5] C. Do, Generalized second derivatives of convex functions in reflexive Banach spaces, Trans. Amer. Math. Soc. (to appear). MR 1088019 (93a:49011)
  • [6] A. Levy, Second-order epi-derivatives of integral functionals with fully amenable integrands, Set-Valued Analysis (to appear). MR 1267204 (95e:49025)
  • [7] P. D. Loewen and H. Zheng, Generalized conjugate points for optimal control problems, Nonlinear Analysis, Theory Methods & Applications (to appear). MR 1270169 (95d:49037)
  • [8] D. Noll, Second order differentiability of integral functionals on Sobolev spaces and $ {L^2}$ spaces, Z. Reine Angew. Math. (to appear). MR 1285832 (95c:49023)
  • [9] R. A. Poliquin and R. T. Rockafellar, A calculus of epi-derivatives with applications to optimization, Canad. J. Math. 45 (1993), 879-896. MR 1227665 (94d:49023)
  • [10] -, Amenable functions in optimization, preprint.
  • [11] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections; in Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math., vol. 543, Springer-Verlag, 1976, pp. 157-207. MR 0512209 (58:23598)
  • [12] -, First- and second-order epi-differentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), 75-107. MR 936806 (90a:90216)
  • [13] -, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), 462-484. MR 1008425 (91b:49022)
  • [14] -, Proto-differentiability of set-valued mappings and its applications in optimization, Analyse Non Linéaire (H. Attouch, J.P. Aubin, F. Clarke, I. Ekeland, eds.), 1989, pp. 449-482. MR 1019126 (90k:90140)
  • [15] -, Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 320 (1990), 810-822. MR 1031242 (91b:90190)
  • [16] -, Nonsmooth analysis and parametric optimization, Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math., vol. 1446, Springer-Verlag, 1990, pp. 137-151. MR 1079762 (91i:49016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49J52, 49K15, 58C20

Retrieve articles in all journals with MSC: 49J52, 49K15, 58C20

Additional Information

Keywords: Integral functionals, epiderivative, epiconvergence
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society