Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The relative Burnside module and the stable maps between classifying spaces of compact Lie groups

Author: Norihiko Minami
Journal: Trans. Amer. Math. Soc. 347 (1995), 461-498
MSC: Primary 55P42; Secondary 22E99, 55Q91, 55R35, 55R91, 57S15
MathSciNet review: 1290726
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Tom Dieck's Burnside ring of compact Lie groups is generalized to the relative case: For any $ G \triangleright N$, a compact Lie group and its normal subgroup $ A(G \triangleright N)$ is defined to be an appropriate set of the equivalence classes of compact $ G$-ENR's with free $ N$-action, in such a way that $ \psi :A(G \triangleright N) \simeq \pi _{G/N}^0({S^0};B{(N,G)_ + })$, where $ B(N,G)$ is the classifying space of principal $ (N,G)$-bundle. Under the "product" situation, i.e. $ G = F \times K,\;N = K,\;A(F \times K \triangleright K)$ is also denoted by $ A(F,K)$, as it turns out to be the usual $ A(F,K)$ when both $ F$ and $ K$ are finite. Then a couple of applications are given to the study of stable maps between classifying spaces of compact Lie groups: a conceptual proof of Feshbach's double coset formula, and a density theorem on the map $ \alpha _p^ \wedge :A(L,H)_p^ \wedge \to \{ B{L_{ + ,}}B{H_ + }\} _p^ \wedge $ for any compact Lie groups $ L,\;K$ when $ p$ is odd. (Some restriction is applied to $ L$ when $ p = 2$.) This latter result may be regarded as the pushout of Feshbach's density theorem and the theorem of May-Snaith-Zelewski, over the celebrated Carlsson solution of Segal's Burnside ring conjecture.

References [Enhancements On Off] (What's this?)

  • [AGM] J. F. Adams, J. H. Gunawardena, and H. R. Miller, The Segal conjecture for elementary $ p$-groups, Topology 24 (1985), 435-460. MR 816524 (87m:55026)
  • [B] S. Bauer, On the Segal conjecture for compact Lie groups, J. Reine Angew. Math. 400 (1989), 134-145. MR 1013727 (90j:55023)
  • [BG] J. Becker and D. Gottlieb, The transfer and fiber bundles, Topology 14 (1975), 1-13. MR 0377873 (51:14042)
  • [Bo] A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), 257-281. MR 551009 (80m:55006)
  • [BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972. MR 0365573 (51:1825)
  • [Br] G. E. Bredon, Introduction to compact transformation groups, Academic Press, 1972. MR 0413144 (54:1265)
  • [C] G. Carlsson, Eequivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. 120 (1984), 189-224. MR 763905 (86f:57036)
  • [D] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., vol. 766, Springer-Verlag, 1979. MR 551743 (82c:57025)
  • [D2] -, Transformation groups, De Gruyter, Berlin-NewYork, 1987. MR 889050 (89c:57048)
  • [DP] T. tom Dieck and T. Petrie, Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287. MR 501372 (80h:57045)
  • [Do1] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0415602 (54:3685)
  • [Do2] -, The fixed point index of fibre-preserving maps, Invent. Math. (1974), 281-297. MR 0380776 (52:1673)
  • [Do3] -, The fixed point transfer of fibre-preserving maps, Math. Z. (1976), 281-297. MR 0433440 (55:6416)
  • [F1] M. Feshbach, The transfer and compact Lie groups, Trans. Amer. Math. 251 (1979), 139-169. MR 531973 (80k:55049)
  • [F2] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), 1-20. MR 880503 (88f:57075)
  • [J] J. W. Jaworowski, Extensions of $ G$-maps and Euclidean $ G$-retracts, Math. Z. 146 (1976), 143-148. MR 0394550 (52:15351)
  • [L] E. Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Math. Scand. 44 (1979), 37-72. MR 544579 (80k:55030)
  • [LM] R. K. Lashof and J. P. May, Generalized equivariant bundles, Bull. Soc. Math. Belgique 38 (1986), 265-271. MR 885537 (89e:55036)
  • [LMSe] R. K. Lashof, J. P. May and G. B. Segal, Equivariant bundles with abelian structured group, Homotopy Theory, Proc. Conf., Evanston 1982; Contemporary Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 167-176. MR 711050 (85b:55023)
  • [LM2] C.-N. Lee and N. Minami, Segal's Burnside ring conjecture for compact Lie groups, Algebraic Topology and Its Applications, Springer-Verlag, New York, 1994, pp. 133-161. MR 1268190
  • [LMM] L. G. Lewis, Jr., J. P. May and J. E. McClure, Classifying $ G$-spaces and the Segal conjecture, Canadian Math. Soc. Conference Proceedings, Vol. 2, part 1, 1982, pp. 165-179. MR 686144 (84d:55007a)
  • [LMS] L. G. Lewis, Jr., J. P. May and M. Steinberger (with contributions by J. E. McClure), Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, Berlin-New York, 1986. MR 866482 (88e:55002)
  • [MP] S. Mitchell and S. Priddy, A double coset formula for Levi subgroups and splitting $ BG{L_n}$, Lecture Notes in Math., vol. 1370, Springer, 1989, pp. 325-334. MR 1000386 (90f:55015)
  • [MSZ] J. P. May, V. P. Snaith, and P. Zelewski, A further generalization of the Segal conjecture, Quart. J. Math. 40 (1989), 457-473. MR 1033218 (91e:55016)
  • [Ma] J. P. May, Some remarks on equivariant bundles and classifying spaces, preprint. MR 1098973 (91m:55017)
  • [M1] N. Minami, On the $ I(G)$-adic topology of the Burnside rings of compact Lie groups, Publ. Res. Inst. Math. Sci. 20 (1984), 447-460. MR 759678 (86g:57029)
  • [M2] -, Group homomorphisms inducing an isomorphism of a functor, Math. Proc. Cambridge Philos. Soc. 104 (1988), 81-93. MR 938453 (89h:55007)
  • [N] G. Nishida, On the $ {S^1}$-Segal conjecture, Publ. Res. Inst. Math. Sci. 19 (1983), 1153-1162. MR 723464 (85g:55026)
  • [P] S. Priddy, On characterizing summands in the classifying space of groups, II, Lecture Notes in Math., vol. 1418, Springer, 1990. MR 1048185 (91j:55010)
  • [R] I. Reiner, Maximal orders, Academic Press, London, 1975. MR 1972204 (2004c:16026)
  • [S] J. P. Serre, Cohomologie Galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin, 1964.
  • [S1] V. P. Snaith, Explicit Brauer induction, Invent. Math. 94 (1988), 455-478. MR 969240 (90a:22025)
  • [S2] -, Topological methods in Galois representation theory, Wiley, New York, 1989. MR 981805 (90f:12005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P42, 22E99, 55Q91, 55R35, 55R91, 57S15

Retrieve articles in all journals with MSC: 55P42, 22E99, 55Q91, 55R35, 55R91, 57S15

Additional Information

Keywords: Burnside ring, classifying space, compact Lie groups, stable homotopy theory, Segal conjecture
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society