Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Distinguished Kähler metrics on Hirzebruch surfaces


Authors: Andrew D. Hwang and Santiago R. Simanca
Journal: Trans. Amer. Math. Soc. 347 (1995), 1013-1021
MSC: Primary 58E11; Secondary 32J27, 53C55
DOI: https://doi.org/10.1090/S0002-9947-1995-1246528-9
MathSciNet review: 1246528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal{F}_n}$ be a Hirzebruch surface, $ n \geqslant 1$. Using the family of extremal metrics on these surfaces constructed by Calabi [1], we study a closely related scale-invariant variational problem, and show that only $ {\mathcal{F}_1}$ admits an extremal Kähler metric which is critical for this new functional. Applying a result of Derdzinski [3], we prove that this metric cannot be conformally equivalent to an Einstein metric on $ {\mathcal{F}_1}$. When $ n = 2$, we show there is a critical orbifold metric on the space obtained from $ {\mathcal{F}_2}$ by blowing down the negative section.


References [Enhancements On Off] (What's this?)

  • [1] E. Calabi, Extremal Kähler metrics, Seminars on Differential Geometry (S. T. Yau, ed.), Ann. of Math. Studies, Princeton Univ. Press, 1982, pp. 259-290. MR 645743 (83i:53088)
  • [2] -, Extremal Kähler metrics. II, Differential Geometry and Complex Analysis (Isaac Chavel and Herschel Farkas, eds.), Springer-Verlag, 1985, pp. 95-114. MR 780039 (86h:53067)
  • [3] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433. MR 707181 (84h:53060)
  • [4] A. D. Hwang, On existence of Kähler metrics with constant scalar curvature, preprint, 1993. MR 1309403 (96a:53061)
  • [5] N. Koiso, On rotationally symmetric Hamilton's equation for Kähler-Einstein metrics, Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math., Vol. 18-I, Academic Press, 1990, pp. 327-337. MR 1145263 (93d:53057)
  • [6] N. Koiso and Y. Sakane, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, Curvature and Topology of Riemannian Manifolds, Lecture Notes in Math., vol. 1201, Springer, 1986, pp. 165-179. MR 859583 (88c:53047)
  • [7] C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory (to appear). MR 1274118 (95k:58041)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E11, 32J27, 53C55

Retrieve articles in all journals with MSC: 58E11, 32J27, 53C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1246528-9
Keywords: Complex surface, Hirzebruch space, ruled surface, extremal Kähler metric, Futaki character
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society