Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Distinguished Kähler metrics on Hirzebruch surfaces


Authors: Andrew D. Hwang and Santiago R. Simanca
Journal: Trans. Amer. Math. Soc. 347 (1995), 1013-1021
MSC: Primary 58E11; Secondary 32J27, 53C55
MathSciNet review: 1246528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal{F}_n}$ be a Hirzebruch surface, $ n \geqslant 1$. Using the family of extremal metrics on these surfaces constructed by Calabi [1], we study a closely related scale-invariant variational problem, and show that only $ {\mathcal{F}_1}$ admits an extremal Kähler metric which is critical for this new functional. Applying a result of Derdzinski [3], we prove that this metric cannot be conformally equivalent to an Einstein metric on $ {\mathcal{F}_1}$. When $ n = 2$, we show there is a critical orbifold metric on the space obtained from $ {\mathcal{F}_2}$ by blowing down the negative section.


References [Enhancements On Off] (What's this?)

  • [1] Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
  • [2] Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
  • [3] Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
  • [4] Andrew D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), no. 3, 561–595. MR 1309403
  • [5] Norihito Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327–337. MR 1145263
  • [6] Norihito Koiso and Yusuke Sakane, Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 165–179. MR 859583, 10.1007/BFb0075654
  • [7] C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298–336. MR 1274118, 10.1007/BF01896244

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E11, 32J27, 53C55

Retrieve articles in all journals with MSC: 58E11, 32J27, 53C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1246528-9
Keywords: Complex surface, Hirzebruch space, ruled surface, extremal Kähler metric, Futaki character
Article copyright: © Copyright 1995 American Mathematical Society