Ribbons and their canonical embeddings

Authors:
Dave Bayer and David Eisenbud

Journal:
Trans. Amer. Math. Soc. **347** (1995), 719-756

MSC:
Primary 14H45; Secondary 13D02, 14C20

DOI:
https://doi.org/10.1090/S0002-9947-1995-1273472-3

MathSciNet review:
1273472

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study double structures on the projective line and on certain other varieties, with a view to having a nice family of degenerations of curves and K3 surfaces of given genus and Clifford index. Our main interest is in the canonical embeddings of these objects, with a view toward Green's Conjecture on the free resolutions of canonical curves. We give the canonical embeddings explicitly, and exhibit an approach to determining a minimal free resolution.

**[D]**Bayer and M. Stillman,*Macaulay: A system for computation in algebraic geometry and commutative algebra*, Available from the authors or by anonymous ftp as follows. ftp zariski.harvard.edu, login: anonymous, Password: any, cd Macaulay, binary, get M3.tar, quit, tar xf M3.tar..**[K]**Chandler,*Geometry of dots and ropes*, Trans. Amer. Math. Soc.**347**(1995), 767-784. MR**1273473 (95f:14054)****[D]**A. Buchsbaum and D. Eisenbud,*What makes a complex exact*?, J. Algebra**25**(1973), 259-268. MR**0314819 (47:3369)****[D]**Eisenbud,*Green's conjecture*;*an orientation for algebraists*, Sundance 91: Proceedings of a Conference on Free Resolutions in Commutative Algebra and Algebraic Geometry, Jones and Bartlett, 1992, pp. 51-78. MR**1165318 (93e:13020)****[D]**Eisenbud and M. L. Green,*Clifford indices of ribbons*, Trans. Amer. Math. Soc.**347**(1995), 757-765. MR**1273474 (95g:14033)****[D]**Eisenbud and J. Harris,*Finite projective schemes in linearly general position*, J. Algebra Geom.**46**(1992), 15-30. MR**1129837 (92i:14035)****1.**-,*On varieties of minimal degree*, Algebraic Geometry; Bowdoin 1985. Proc. Sympos. Pure Math., vol. 46, part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 3-14.**[L]**-Y. Fong,*Rational ribbons and deformation of hyperelliptic curves*, J. Algebraic Geom.**2**(1993), 295-307. MR**1203687 (94c:14020)****[L]**Gruson and C. Peskine,*Courbes dans l'espace projectif, varietés de sécantes*, Enumerative Geometry and Projective Geometry, Progress in Math., vol. 24, (P. Le Barz and Y. Hervier, eds.), Birkhäuser, Boston, MA, 1982, pp. 1-31. MR**685761 (84m:14061)****[R]**Hartshorne,*Curves with high self intersection on algebraic surfaces*, Publ. Math. IHES**36**(1969), 111-125. MR**0266924 (42:1826)****[K]**Hulek and A. Van de Ven,*The Horrocks-Mumford bundle and the Ferrand construction*, Manuscripts Math.**50**(1985), 313-335. MR**784147 (86e:14005)****[S]**Lichtenbaum and M. Schlessinger,*The cotangent complex of a morphism*, Trans. Amer. Math. Soc.**128**(1967), 41-70. MR**0209339 (35:237)****[R]**Piene,*Numerical characters of a curve in projective*-*space*, Real and Complex Singularities, Oslo 1976, (P. Holm, ed.), Sijthoff and Noordhoff, The Netherlands, 1977, pp. 475-498. MR**0506323 (58:22095)****[F]**O. Schreyer,*Syzygies of canonical curves and special linear series*, Math. Ann.**275**(1986), 105-137. MR**849058 (87j:14052)****[E]**Sernesi,*Topics on families of projective schemes*, Queen's Papers in Pure and Appl. Math. 73, Queen's Univ., Kingston, Canada, 1986. MR**869062 (88b:14006)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
14H45,
13D02,
14C20

Retrieve articles in all journals with MSC: 14H45, 13D02, 14C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1273472-3

Keywords:
Ribbon,
double structure,
hyperelliptic curve,
Clifford index,
Green's conjecture,
free resolution,
canonical curve,
K3 surface,
K3 carpet

Article copyright:
© Copyright 1995
American Mathematical Society