Functions with bounded spectrum

Author:
Ha Huy Bang

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1067-1080

MSC:
Primary 42B10; Secondary 26D20, 46E35

DOI:
https://doi.org/10.1090/S0002-9947-1995-1283539-1

MathSciNet review:
1283539

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let , and be bounded, where is the Fourier transform. We will prove in this paper that the sequence , has the same behavior as the sequence , . In other words, if we know all "far points" of , we can wholly describe this behavior without any concrete calculation of . A Paley-Wiener-Schwartz theorem for a nonconvex case, which is a consequence of the result, is given.

**[1]**R. A. Adams,*Sobolev spaces*, Academic Press, New York, San Francisco, and London, 1975. MR**0450957 (56:9247)****[2]**H. H. Bang,*A property of infinitely differentiable functions*, Proc. Amer. Math. Soc.**108**(1990), 73-76. MR**1024259 (90j:26029)****[3]**-,*Some imbedding theorems for the spaces of infinite order of periodic functions*, Math. Notes**43**(1988), 509-517. MR**940848 (89f:46072)****[4]**-,*On imbedding theorems for Sobolev spaces of infinite order*, Mat. Sb.**136**(1988), 115-127.**[5]**-,*Imbedding theorems for Sobolev spaces of infinite order*, Acta Math. Vietnam**14**(1989), 17-29. MR**1058273 (91e:46040)****[6]**Ju. B. Egorov,*Lectures on partial differential equations*, Moscow State Univ. Press., Moscow, 1975.**[7]**L. Hörmander,*The analysis of linear partial differential operators*I, Grundlehren Math. Wiss., 256, Springer, Berlin, Heidelberg, New York, and Tokyo, 1983. MR**717035 (85g:35002a)****[8]**P. I. Lizorkin,*Estimates for trigonometric integrations and the Bernstein inequality for fractional derivatives*, Izv. Akad. Nauk SSSR Ser. Mat.**29**(1965), 109-126. MR**0178306 (31:2564)****[9]**R. J. Nessel and G Wilmes,*Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type*, J. Austral. Math. Soc.**25**(1978), 7-18. MR**0487212 (58:6872)****[10]**S. M. Nikolsky,*Approximation of functions of several variables and imbedding theorems*, "Nauka", Moscow, 1977.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B10,
26D20,
46E35

Retrieve articles in all journals with MSC: 42B10, 26D20, 46E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1283539-1

Keywords:
Inequalities for derivatives,
Fourier transform

Article copyright:
© Copyright 1995
American Mathematical Society