Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Functions with bounded spectrum


Author: Ha Huy Bang
Journal: Trans. Amer. Math. Soc. 347 (1995), 1067-1080
MSC: Primary 42B10; Secondary 26D20, 46E35
MathSciNet review: 1283539
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ 0 < p \leqslant \infty ,\,f(x) \in {L_p}({\mathbb{R}^n})$, and $ \operatorname{supp} Ff$ be bounded, where $ F$ is the Fourier transform. We will prove in this paper that the sequence $ \vert\vert{D^\alpha }f\vert\vert _p^{1/\vert\alpha \vert},\,\alpha \geqslant 0$, has the same behavior as the sequence $ \mathop {\lim }\limits_{\xi \in \operatorname{supp} Ff} \vert{\xi ^\alpha }{\vert^{1/\vert\alpha \vert}}$, $ \alpha \geqslant 0$. In other words, if we know all "far points" of $ \operatorname{supp} Ff$, we can wholly describe this behavior without any concrete calculation of $ \vert\vert{D^\alpha }f\vert{\vert _p},\,\alpha \geqslant 0$. A Paley-Wiener-Schwartz theorem for a nonconvex case, which is a consequence of the result, is given.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • [2] Ha Huy Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1990), no. 1, 73–76. MR 1024259, 10.1090/S0002-9939-1990-1024259-9
  • [3] Kha Zuĭ Bang, Some embedding theorems for spaces of periodic functions of infinite order, Mat. Zametki 43 (1988), no. 4, 509–517, 574 (Russian); English transl., Math. Notes 43 (1988), no. 3-4, 293–298. MR 940848, 10.1007/BF01139134
  • [4] -, On imbedding theorems for Sobolev spaces of infinite order, Mat. Sb. 136 (1988), 115-127.
  • [5] Ha Huy Bang, Imbedding theorems of Sobolev spaces of infinite order, Acta Math. Vietnam. 14 (1989), no. 1, 17–27. MR 1058273
  • [6] Ju. B. Egorov, Lectures on partial differential equations, Moscow State Univ. Press., Moscow, 1975.
  • [7] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • [8] P. I. Lizorkin, Bounds for trigonometrical integrals and an inequality of Bernstein for fractional derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 109–126 (Russian). MR 0178306
  • [9] R. J. Nessel and G. Wilmes, Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type, J. Austral. Math. Soc. Ser. A 25 (1978), no. 1, 7–18. MR 0487212
  • [10] S. M. Nikolsky, Approximation of functions of several variables and imbedding theorems, "Nauka", Moscow, 1977.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10, 26D20, 46E35

Retrieve articles in all journals with MSC: 42B10, 26D20, 46E35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1283539-1
Keywords: Inequalities for derivatives, Fourier transform
Article copyright: © Copyright 1995 American Mathematical Society