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FUNCTIONS WITH BOUNDED SPECTRUM

HA HUY BANG

Abstract. Let 0 < p < oo, f(x) e Lp(U.n), and supp Ff be bounded, where

F is the Fourier transform. We will prove in this paper that the sequence

ll-DQ/]|i/|a'; a > o , has the same behavior as the sequence     sup   |£Q|'/I<«I;
{esuppf/

a > 0. In other words, if we know all "far points" of supp Ff, we can wholly

describe this behavior without any concrete calculation of ||Z)a/||p , a > 0 . A

Paley-Wiener-Schwartz theorem for a nonconvex case, which is a consequence

of the result, is given.

1. Introduction

The following result showing a relation between behavior of the sequence of

norms of derivatives of a function and the support of its Fourier transform [2]
has been proved: Let 1 < p < oo and Dmf(x) £ Lp(Rl), m = 0, I,... . Then
there always exists the limit

and moreover

a> = sup{|£|:£esupp/},

where /(<*;) = Ff(<£) is the Fourier transform of the function f(x).
This result is of value in the theory of Sobolev spaces of infinite order, in

particular, in studying imbedding theorems for Sobolev spaces of infinite order

[3-5].
The question arises as to what happens for the rc-dimensional case? In this

paper we give a complete answer to this question. It should be noted that here

we do not assume any restriction on geometrical properties of supp/ (which

is called the spectrum of /).
We will use the following standard notation: a = (ax, ... , a„) £ Z*".; D =

(Dx,...,Dn); Dj = g.,j = 1,...,«; Da = D?  -D? ; sp(/) = supp/.
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1068 H. H. BANG

And we presuppose that 0° = jj = 1, g = oo  for k > 0, f(x) £ S?', and

/(*)*0.

2. Results

We will show the following

Theorem 1. Let 0 < p < oo, f(x) £ LP(R") and sp(/) be bounded. Then

(1) lim(\\D°f\\p/sup\c:"\)l/lal = l-
lal—oo Sp(/)

To prove Theorem 1 we need the following results: Let 0 < p < q < oo and

K cW be compact. Denote by MKp the class of all functions in &" n Lp(Rn)

such that sp(f) c K. The following Nikolsky inequality is well known the ([9],

[10, p. 125]): There exists a constant C(p, q, K) such that

\\f\\q<C(p,q,K)\\f\\p

for all / £ MKp .
It follows from the Nikolsky inequality that Mkp c MKoo, 0 < p < oo.

Further, let G be a domain in R" and m £ Z+ . Denote by Wm,2(G) the
classical Sobolev space, i.e., the completion Cm(G) with respect to the norm

ll/IL,2= ( £ H^/llLo)    •
\\a\<m j

And W® 2(G) is the subspace of all functions f(x) £ Wm^2(G) such that the

zero extension of f(x) outside G belongs to Wm2(W). For J6B,we put

H(s) = {f£&': ||/||(„ = Qfjl + \t:\2y\Fm)\2d£J12 < oo|.

Then

77(/t) = Wk2(R")   (topological imbedding)

if k £ Z+ (see, for example, [1, p. 45; 6, p. 53; 7, 7.9.1]).

Proof of Theorem 1. We divide the proof into three cases.

Case 1 (1 < p < oo). We first establish the following inequality

(2) lim (\\Daf\\p/\n)l/M > 1
|dr| —>00

for any point £ £ sp (/).

Actually, let £° e sp(/), & ^ 0, j = 1,..., n. (It is easy to show later that

there exist such points because of p < oo.) For the sake of convenience, we

assume that & > §, j = I, ... ,n . We fix a number 0 < e < i min £° and

choose a domain G with a smooth boundary such that £° £ G and G c {£ :
£° - e < Zj < {J + e, j = 1,...,«}. Further we fix a function «(<*;) € C0°°(G)

such that £° e supp(t)/). Then

o) (mte),w(Z)) = {f(x),<p(x)),
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V        V V

where w(£) £ Cq°(G) is an arbitrary function, tp(x) = v * w(x), and u(x) =

u(-x). The distribution #(£)/(£) has a compact support; therefore, it can be

represented in the form

fl(0/«)= £ ^MO.
|a|<m

where m is a nonnegative integer and ha(£) are ordinary functions in G.

Without loss of generality we may assume that m>2n.

It is well known that the Dirichlet problem for the elliptic differential equa-

tion

L2mm = Yl (-i)MDa(D°m) = mm
\a\<m

has a (unique) solution z(£,) £ W® 2(G) (see, for example, [6, p. 82]). Since

(3), we obtain

(4) (m,L2mW(c:)) = (f(x),<p(x))

for all w(£) £ Cq°(G) . The left side of (4) admits a closure up to an arbitrary

function w(£) £ W°m, 2(G). Hence, replacing w(£) by £aw(£), we get

(5) (z(S), L2m(Zaw(S))) = (-ip(Daf(x),tp(x))

for all w(S,)£ W^2(G).

Now let tZ>o(<Jf) £ W° 2(G) be the solution of the equation L2mWo(£) = z(£).

Since 0 £ G, we get

n

L2m(^wa(i)) = Y[($ - 2e)a'W),

7 = 1

where wQ(£) = \[nj=x(^-2e)a^-°"wQ(Q and a > 0. Therefore, it follows from

(5) that

(6) f[(Zy-2e)°J(z(Z),Iffi)<\\D°f\\p\\v\U\\wa\\9 ,
7=1

where l/p +\/q= 1 .
On the other hand, there exists a constant C > 0 such that

(7) ||»||i|lw«||,<C,        <*>0.

Indeed, let \fi\<2n. Using

x'wa(x) = (-i)"l f[($ - 2e)°; / e*<Z)'vratDo(f))#,
7 = 1 ■/G

the Leibniz formula, and the definition of G, we get

sup\x^wa(x)\<CxH[^-—\    £(v)na*"-(a*-r>'*-1)'
R" 7=1  V *»7 /       y</7 ̂ 7// fc=l

where

C, = max | jT \^Dfi-yWo(Q\di • 7 < P% \fi\ < 2«} .
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1070 H. H. BANG

On the other hand, since

n

Y[ak       K + ^-l)<(|a|+2«)2"
k=\

(because of |y| < \fi\ < 2n),

*" = E (?)
and

"   (P-2z\ai
tojH + 2„)-rT^r_]   =0,

we obtain

sup \x^coa(x)\ < C2
x€R"

for all \fi\ <2n and a > 0. Therefore, there is an absolute constant C3 such

that

sup(l + xf) ■ ■ ■ (1 + x2)\wa(x)\ < C3 , Q > 0.
R"

So we have proved (7) with C = C3^"||u||i. Combining (6) and (7) we obtain

/ . \ ^

1<  lim     ||Z)a/llpII(^-2c)"Qy •
H-°° \ 7=1 j

Therefore, since e > 0 is arbitrarily chosen and

n(V) ]   s^-
we obtain (2) (with <*; = £°) by letting e — 0.

Now we prove (2) for "zero points": Let £° € sp(/), £° # 0, and £° • ■ • £° =

0. For the sake of convenience, we assume that {? > 0, j = 1,..., k, and

£k+l = •■■ = ^ = 0 (I < k < n). Then it is enough to show (2) only for

indices a such that ak+x = • ■ • = an = 0. Then the proof is analogous to the

above one after the following modification of choosing e : We fix a number

0 < e < A min & .
i<j<k J

Second we prove that

/ \ l/M

(8) lim   (\\Daf\\p/sup\^\)       >1.
|a|-ce \ sp(/) j

Assume the contrary, that there exists a subsequence Ix such that

, vi/M

(9) (70   lim     ||7)Vllp/sup|^| <1,
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FUNCTIONS WITH BOUNDED SPECTRUM 1071

where the symbol (Ix) in (9) means that we take the limit only for a £ Ix.

Then there exist a subsequence I2 c Ix and numbers 0 < Bj < 1, j = 1,..., n

such that |/71 = 1 and

(10) (I2)   lim  ^ = fij,        j=l,...,n.
|o|—oo |a|

Now we prove

(11) lim sup \?\ = sup |^|
y^fi sp{f) sP(/)

if y £ R% and y -» fi .
Indeed, given h > 1, there exists e > 0 such that hy > fi for yeR" and

\y- fi\<e. Further, let |£| < Af for all £ £ sp(/). Then for £ £ sp(/) and
y £ RI, \y - fi\ < e we obtain

\?\ = |^-/>/*|((?/»|l/A < M\7-B/h\ sup |^|l/A_

sp(/)

Therefore
lim sup |f| < M^1-1'^ sup |^|'/A.
^ sp(/) sp(/)

Letting /z -> 1, we get

lim sup K7| < sup |^|.
y-+Bsp(f)        sP(/)

To prove (11) it remains to show that

(12) Iimsup|cf|>sup|<^|.
7-0 SP(/) sp(/)

Let £* e sp(/) such that \£*P\ = sup|^|. Then it follows from p < oo that the
SP(/)

distribution /(£) cannot concentrate on the hyperplanes £/ = 0, j = 1, ... , n

(this fact will be shown later). Therefore, \£*P\ > 0. Furthermore, let n be

an arbitrary point of sp(/). Then we will show later that the restriction of

the distribution /(£) on any neiborhood of n also does not concentrate on
the hyperplanes <JJ = 0, j = 1, ... , n . Therefore, there exists a sequence

m£ £ sp(/), m > 1, such that m£; ^ 0, j = I, ... , n, for any m > 1 and

m£ —> £*, w — oo. Then

sup kh > Ui
sp(/)

for any m > 1. Hence,

lim sup |^| > lim|m^| = \mtf\.
y-fi sp(/) 7-0

Letting w —» oo, we obtain (12) and then (11).

Further, given k > 1, there is a number /c > 1 such that k\k^\ > |£*^|.
Therefore, it follows from (10)-(11) and (2) that

(h)   lim (\\Daf\\Plsrxo\!;«\)V\°\ = (I2)   lim \\Daf\\l,M/\^\
|q|—oo sp(/) |q|—cc

> (h) \ lim UTr/liy1*1/]^!
A|a|-co

= (h)\ Jim ||DQ/llp/l^Q|I/|Q|>T.
A|a|—oo "■
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1072 H. H. BANG

This contradicts (9) by letting k —► 1. Thus we have proved (8).

Finally, we will show

(13) HE (||7r/||p/suP01/|Q|<l.
l«l-oo sp(/)

We fix a domain G D sp(/) and a function y/ £ Cq°(C7) such that y/(£)

equals 1 in some neighborhood of sp(/). Further, let 0 < q < 1 . We put
ha(£) = y(0€a, & >0. Then it follows from Holder's inequality that for any

s>n(l/q-l/2)

\\F-'ha\\<>= j(\ha(l;)\2yl2dZ

< (jihwwi+itfydsy x^yd+i^i2)-^2-^   .

Therefore,

(14) \\F-lha\\q<C'\\ha\\{s),

where C = C'(s, q) is independent of ha .

Combining (14), the topological equality 77^) = Wk2(R"), and

\\Daf\\P = ||F-V(0<r)*/llp < \\F-l(¥(Z)?)\\i\\f\\p,
we get

(15) \\Daf\\p<C\\yy(^a\\k,2\\f\\P, a>0,

where C is independent of / and a and k — [j] + 1.

Given the Leibniz formula we get a constant Cx = Cx(y/, k) such that

(16) |k(^a|U,2<C,|a|A:sup{sup|^-''|:7<Q,|7|</c},        a > 0.
G

On the other hand, by an argument analogous to the previous one, we get

(17) lim   (sup{sup|^Q-)'|:7<a, |7|</c})'/ia|/sup|^Q|1/|Q| = 1.
|a|—oo g G

Actually, assume the contrary, that there exist a subsequence Ix and a number

3 > 1 such that

(18) sup{sup|£Q-'11/|Q|:}'<a, M < A:} > <5sup|<T|1/|a|,        a£lx.
G G

Therefore, there are a subsequence  I2  c Ix, numbers  0 < fij  <  1, j =

1, ... , n, and an index y°, \y°\ < k, such that \fi\ = 1 and

(I2) lim  -l—± = fij,        j=l,...,n,
|a|—oo       |Q|

and

sup|sup|^a-''|1/|a| :y<a, \y\<k\ = sup|£a-,/'|1/|Q|

for all a £ I2. Therefore, by an argument analogous to that used for the proof

of (11), we get

(72)  lim sup|£Q-5,°|I/|Q| = (h)  Hm sup|£Q|1/H = sup|f'| > 0,
|a|—oo   G |a|—oo   q G

which contradicts (18). Thus we have proved (17).
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Combining (15)—(17) we obtain

(19) hm ||7r/liy|a|/sup|£a|1/|a| < i.
|o|—oo G

Now we assume the contrary that (13) does not hold. Then there exist a

subsequence J and numbers k > 1, 0 < fij < 1, j = I, ... , n , such that

\fi\ = 1 and

(J) lim ||DQ/liy|a|/sup|^|1/|Q|=A,
l<*|—°° sp(/)'

(J) lim  ^ = fij,        j=l,...,n.
|a|—oo \a\

Therefore, given the validity of (11) when sp(/) is replaced by G (which can

be proved analogously because G is open) and (19) we get

sup tf\l sup K'| > X
G sp(/)

for any domain G D sp(/), which is impossible because of sup|<^| > 0. The
sp(/)

proof of Case 1 is complete.
Case 2 (p = oo). This is the most complicated case. It should be noted

that many facts used in the proof of Case 1 are false in this case (for example,

equality (11)). We first prove that if sup|£Q| = 0, then Daf(x) = 0 (for the
sp(/)

same a). Indeed, without loss of generality we may assume that a} ^ 0, j =

I, ... , k, and ak+x = •■■ = an = 0 (I < k < n). Then the distribution /(<*;)
concentrates on the hyperplanes fy = 0, j € {1, ..., k} = 7.

For each j £ I we put

Gj = {^£Rn:^^0,i£l\{j}}.

Then Gj is open. And let fx(£) be the restriction of f(£,) on U Gj. Then

using a partition of unity (see, for example, [7, Theorem 1.4.5]), we get

k

/i(£) = £?>,•(£)/(£),

7=1

where iptf) €C§°(Gj), j el.
The distribution (pj(E)f(l;) concentrates on the hyperplanes £; = 0. There-

fore, taking account of a remark on Theorem 2.3.5 mentioned in Example 5.1.2

in [7], we get

N

(20) F-\<pjf)(x) = Y^ge(xx,..., xj-i, Xj+i,... , xn).(-ixj)e ,
e=o

where N is the order of the distribution /(<*;) (N < oo because supp/ is com-

pact), gt(Zi, ..., Zj-i, </+i,... , £„), I = 0,1, ... , N- distributions with
compact support.

On the other hand, we have

\\F-l(9jM°o = WF-'fj */||oo < IIT-Vylhll/Hoo < oo.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Therefore, (20) is possible only if I = 0. Consequently, the function

F~l(tpjf)(x) is independent of Xj . Hence, since ay ^ 0, we get

DaF-i(9,Jf)(x) = 0,        j£l,

and then Dafx (x) = 0. Therefore, to prove Daf(x) = 0, it is enough to show

that D"(f-fi)(x) = 0.
Further, let <^ € R"\ [J Gj .  Then there exist at least two indices i, j £ I

76/

such that & = £, = 0. Therefore, the distribution /(£) - / (£) will concentrate

on the hyperplanes & = <*!/ = 0, i, j £ I, i ^ j.
Let i, j e 7, / # j. We put

Gij = {t€R":lu¥:0,l€l\{i,j}}.

Then G,; is open. And let /2(^) be the restriction of f(£)-f\(€) on the union
of the sets G,/, i, j £ I, i ^ j. Then using the partition of unity, we get

m)= £ mo(/(«-/i(0).

where ?,;(<*;) € C0°°(G,7) .

The distribution (Pij(Q(f(E,) - f\(£)) concentrates on the hyperplane £,■ =

£,■ = 0. Therefore, DaF~l[tpjj(f - fx)](x) = 0 because, as shown above,

F~x(9ij(f — f\))(x) is independent of variables Xi,Xj. Consequently,

Daf2(x) = 0. Therefore, to prove Daf(x) = 0, it is enough to show that

D°(f-fx-f2)(x) = 0.
Now let £ £ Rn\\J{Gjj : i, j £ I, i ^ j} . Then there are at least three indices

h , h, h £ I such that £,, = <j;,-2 = {,-3 = 0. Therefore, the distribution /(<*;) -

/i(£) - 72 (£) concentrates on the hyperplanes £,, = &2 = <j;,-3 = 0, z'i, z'2, z'3 e
7, z'i ̂  z2 ̂  13 •

Again for z'i, i2, z'3 € 7, z'i ̂  i2 ^ z3, we put

Ghnh = {Z£Rn:Zj^0,J£ /\{i,, z2, 13}}

and call /((?) the restriction of /(<!;) - fx(£) - j\(£,) on the union of the sets
GiiWi > '1 > '2,'36/, z'i / z'2 7^ z'3. Then we have again Daf^(x) = 0. So it is

enough to prove D°(f-f, -f2- f3)(x) = 0, where f(i)~ A(£)-M)~MZ)
concentrates on the hyperplanes £,-, = <jf/2 = &3 = <J;,-4 = 0, z'i, z'2 , z'3, z'4 € 7, z'j ̂

'2 # '3 7^ *4 • Repeating the above arguments, we obtain the distribution /(<*;) -

/1 (£)-7fc-i(£) which concentrates on the hyperlane £1 = • • • = £k = 0 and

Daf(x) = 0 if Da(f-fx-/fc-i)(*) s 0. The last fact is clear because, as

shown above, (f-fx-fk-\){x) does not depend on variables xx, ... , xk .
Thus we have proved Daf(x) = 0.

By the result just obtained, it is enough to show (1) only for multi-indices

a > 0 such that sup|£a| > 0 and denote by P the set of all such as multi-
spif)

indices.
Second we notice that inequalities (2) and (19) have been proved for 1 <

p < 00.

Next we prove that

(21) (P) hm (||Z>0/l|oo/sup|£0|),/l°!>l.
|or| — OO sp(/)
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Assume to the contrary, that there exist a subsequence 7 c P, a number k < 1,

and a vector fi > 0, \fi\ = 1 such that

(22) (7)  lim (ll/^/lloo/supl^D'/M^ ,
l<*| —00 sp(7j

(23) (7) lim  g-=fi.
|a|—oo \a\

Note that

(24) (7) lim  sup|<j;a|1/|a| >0.
|q[—cosp(/)

Indeed, assume to the contrary, that there exists a subsequence J c 7 such that

(25) (7)  lim  sup|e|1/|Q| = 0.
|a|—oo gpif)

For any 1 < k < n and ix, ... , ik £ {I, ... , n} we put

7/,...!* = {" > 0 : a,-, ̂  0, ... , aik # 0 and aj = 0 if j $ {h,... , ik}} .
Then there exist 1 < k < n and ix, ... , ik £ {I, ..., n} such that //,.../t =

•7 n 7},...^ is unbounded. Therefore, clearly, we get

W,..,'J lim supn'/N > (A-.*) lim |/7°|1/|a| > 0,
|a|—oosp(/) |o| — co

where n is any point of sp(/) such that nil ^ 0, ... , r\ik # 0. This contradicts

(25). So we have proved (24).
Further, let £ £ sp(/) : Ua\ = supH. Then a&, # 0, ... ,afct # 0 for

sp(7)

any a e Jix...ik and, by taking a subsequence, without loss of generality we may

assume that for some £* £ sp(/)

(26) (•//,.../*) lim  Q£ = r.
|q|—co

Now we consider two cases of £*:

If <*;*. ^ 0, j = 1,..., k, then, obviously,

(7,,.,-J  lim  |Q<ff/|a| = |^| = (Jh..,k), bm  rQ|I/|Q|
\a\—>oo \a\—'CO

which together with £* e sp(/), (2), and (22) implies

1 <(/,,.,,) lim (||DQ/Hoo/irQ|)1/|a|
|a|—CO

= (J,,..4)  lim (H/y/Hoo/ sup I^D'/W < A < 1 ,
l«l-oc sp(/)

which is impossible.
Otherwise, without loss of generality we may assume that £* = • • • = £,* =0

and ^+| ?4 0, ..., <% ?* 0 for some 1 < m < k .

Since (24) and (26), it follows that d;* ̂  0, Therefore, m < k. Further,
by virtue of (23)-(24), (26), the definition of Qc, and £* = • • • = ££ = 0 we

obtain /?,, = • • • = /7im = 0. Since, clearly,

= (/,, ,.) lim \if'T' ...ff"'*|l/|B|,
'"*    |a|-oo     'm+1 '*    .
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1076 H. H. BANG

there exist v £ Jj,...ik and N > 0 such that

(27) |,AI<A-Vfc|,        e = m+l,...,k,

for all |q| > N, a £ Jtl_ik
On the other hand, it follows from „<(;,•, ^ 0, ... , v£ik =£ 0 and

(/,-,...,,) lim a& = «; = 0,        j =l,...,m,
\a\—>oo J

that there exists Af > 0 such that

U/,|<U,,|,       j=l,...,m,

for all |af| > Af, a e /,,...,,.. This together with (27) implies

laQj I 5: ̂       \v<*ij I , 7 = 1 > • • • j * j

for all |a| > max{Af, N}, a £ J^...ik. Therefore,

sup i<riI/w = ua\1/M < a-vQi1/|a|
sp(7)

which together with (2) and (22) implies

l < (Ji,...ik) Urn (Wf\UUa\)l,M
\a\—>oo

< (7,,.,-J k~l  lim (||7?VI|oc/ sup 0I/N < I-
H—oo Sp(y-)

We thus arrive at a contradiction. So we have proved (21).

Finally, to complete the proof it remains to show that

(28) (P) Hm" (HTT/IIco/ sup n)1/|Q| < 1.
l<*l-oo sp(/)

Assume to the contrary, that there exist a subsequence 7 c P, a number /z > 1,

and a vector /? > 0, \fi\ = 1  such that

(29) (7)  lim (||7)Q/lloo/ sup |<H)I/|ai > h,
lQl—'°° sp(/)

(30) (7) lim  ^ = /J.
|a|—co |a|

Notation being as above, we have 1 < k < n and ix, ... , ik £ {I, ... , n}

such that Iil...ik = 7 n 7/,...,^ is unbounded.
We put

Q = {n£R":3{mQcsn(f),m^^0,

j £ {z'i, ... , ik}, m > 1,  lim m£ = n},
m—co

Qs = {x + y.x£Q,\y\<6},        d>0,

and 77 = R"\Q. Then (? is close, 77 and Q6 are open.
Therefore, since sp(/) c Qs U 77(= R"), we obtain

/«) = ^(C~)/(C~) + Kfl/tf), 95 € C0°°(fi,), W £ Q°(77).

By an argument analogous to the previous one, we can prove that DaF~i( y/f)(x)

= 0 for all a £ 7/,„./4 . Hence, it follows from (29) that

(31) (7,,.,J  lim (\\DaF-l(nf)\\oo/ sup |£°|)'/W > h
l<*|—oo sp(/)

for any S > 0.
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On the other hand, by an argument used in the proof of equality (11), we get

(32) (7,,.,J lim sup|<ri1/|a| = sup|^|.
IQH°° Qi Qs

Further, let m8 £ Q\/m : \m0fi\ = sup|<*f^|, m > 1 .  Then there exist a subse-
Q\/m

quence {mk} (for simplicity of notation we assume that mk = k, k > I) and

a point 6* £ Q such that m6 -* 6*, m -> oc. Then

0 < supl^l < lim |m6^| = |0^|.
n m—>oo

Arguing as in the proof of (12) and taking account of 8* £ Q and (30) we
obtain

(33) |0''| < (7,WJ lim supl^l1^!.
|o|— co   Q

Further, because inequality (19) was proved for 1 < p < oo, we have

(34) (/,,.,Jfim" (H^F-^^./^Hoo/supl^D'/H < 1

for any m > 1.

Now we fix a number m > 1 such that \m6B\ < h\0*P\. Then combining
(31)—(34), we obtain

1 > (7,,..,J lim" (II^T-H^i/^llco/supIc"!)1/101
I"| —°° Gl/m

= (7(|..,J hm" WITF-Hpi/mM^/Wl
\a\—>oo

> (7,WJ Urn" h-l\\DaF-'(tpx/mf)\\l^/\d^\
\a\—•■oo

> (Ii{..jk) Hm" h-H\\DaF-i(tpi/mf)\U™p\Za\)1M
|a|—oo Q

= (7,,.,-J lim /z-'aiD^-'^./mTOIloo/ sup \ia\)l/M > 1,
l<*l— oo Sp(y)

which is impossible.
The proof of Case 2 is complete.

Let us now return to prove the fact mentioned in the proof of Case 1 that the

distribution /(£) does not concentrate on the hyperplanes £/ = 0, j = 1, ..., n

if 1 < p < oo. Actually, assume to the contrary, that / concentrates on the

hyperplanes £> = 0, j — 1,... , n. Then, notation being as above, we have

/.(£) = X>(£)/(£),        ?j£CcT(GJ),
7=1

n

where fx is the restriction of / on  U Gj.
7=1

On the other hand, it follows from the Nikolsky inequality that f(x) £ L^ .

Therefore, as shown above, F~](tpjf)(x) is independent of Xj, which is pos-

sible only if F~x(<pjf)(x) = 0 because of

\\F-\<Pjf)\\P<\\F~X<Pj\\l\\f\\P<™
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and p < oc. Therefore, / must concentrate on the hyperplanes & = £j =

0, i, j £ {I, ... , n}, i ^ j. Repeating the above arguments, taking account of

p < oo, we obtain supp/ c {0}, which is impossible because of p < oc and

f(x)£0.
Further, let n be an arbitrary point of sp(/). Then analogously we can prove

that the restriction of /(<!;) on any neighborhood of rj also cannot concentrate

on the hyperplanes <£,- = 0, j = 1,..., n.
Case 3 (0 < p < 1). The inequality

lim (\\irf\\pl*vv\Za\)XM>i
|a|—co sp(/)

follows from the Nikolsky inequality and Case 1. The inverse inequality

IlnT (||77a/llp/suPri)1/|a|<l
M—oo sp(7")

can be proved in the same way as shown above with the following modification

of (15):

(35) Wf\\p<C\ty(S)Za\\k,2\\f\\P,        a>0,

where k = [n(x-- {-)] + 1.

Let us now prove (35). Given (14), we get

(36) \\F-xha\\p<C'\\ha\\(k),        q>0,

where C is independent of / and a and notation is as above.

On the other hand, given

supp F(F~xha(.)f(x - .)) c supp ha + supp F(f(x - .))

= supp/zQ - supp/7/ c G - sp(/) ,

the Nikolsky inequality, and (36), we get F~lha £ Lx, F~lha(.)f(x — .) e Lp
for any x £ R" , a > 0, and

\(F-xhaFf)(x)\? < (y \F-lha(y)f(x - y)\ dyj

<q J\F-lha(y)\P\f(x-y)fdy ,

where Cx = Cx(p, G - sp(/)). Therefore, given (36) we obtain

\\D°f\\p = \\F-xhaFf\\p < CX\\F-Xha\\p\\f\\p

<C2\\ha\\{k)\\f\\p<C\\ha\\kJ\f\\p

for all a > 0. So we have proved (35).
The proof of Theorem 1 is complete.

Remark 1. By an easier way we can prove Theorem 1 for functions defined on

torus T".

Remark 2. Theorem 1 still holds for the case of fractional derivatives. And it

can be extended to the cases of other derivatives as Riesz' or Bessel's ones (see

[8]).

Remark 3. Equality (1) is not true if sp (/) is unbounded. However, we have
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Theorem 2. Let 0 < p < oo, f(x) £ LP(R"), and sp(/) with respect to £1, ...,

4 (1 < k < n) be bounded. Then Dvf(x) £ Lp(Rn) for all v = (vx, ... ,vk,
0, ... , 0) £ U% and

lim (||7)VIUsup|ri)1/H = l.
IH-oo Sp(/)

3. An APPLICATION

Now let us apply Theorem 1 to obtain a nonconvex case of the Paley-Wiener-

Schwartz theorem. For this purpose we have to introduce a notion on a set

generated by a number sequence: Let 0<AQ<oo,a>0. Denote by G{ka}

the set of all points £ £ R" such that |£Q| < ka for all a > 0. Then it is

easy to see that G{ka} is compact and G{/z|aUa} = hG{ka\, h > 0. Note that

G{ka} can be nonconvex. Actually, let n = 2, kyj) = 21'--'1, i, j £ Z+ . Then

G{k{iJ)} = {(x, y) £ R2: \xy\ < I, \x\ <2, \y\ < 2}—the parabola cross.
If there exist m > 1 and fi > 0 such that k^ < kmp, then G{ka} does

not change when we replace kmp by k'g . So, to define G{ka} we can always

assume that the sequence {ka} is right, i.e. ka > km™ for all a > 0 and

m > 1. Using Theorem 1, we can prove the following

Theorem 3. Let 0 < p < oo, f(x) £ LP(R") and {ka} be right. Then sp(/) c

G{ka} if and only if

(37) lim" (||7)«/llpAa)I/|Q| < I-
\a\—> oo

Proof. Let sp(/) C G{ka}. Then

sup|^Q|<AQ,        q>0.
sp(/)

Therefore, since Theorem 1, we get (37).
Conversely, if (37) holds, then given Theorem 1 we have

ilm (sup|£a|/;.Q)1/|a| < 1.
|a|—oo sp(y-)

Therefore, for any e > 0 there exists a number N < oo such that

sup|<r|<(l+e)l*Ua, \a\>N.
sp(7)

On the other hand, the sequence {ka} is right; therefore,

sup|<n<(l+e)wAa
sp(7)

for all q > 0. Hence,

sp(/)c(l+e)G{Aa}.

Letting e — 0, we get sp(/) c G{ka} . The proof is complete.
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