Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Cappell-Shaneson's homology $ L$-classes of singular algebraic varieties


Author: Shoji Yokura
Journal: Trans. Amer. Math. Soc. 347 (1995), 1005-1012
MSC: Primary 57R20; Secondary 14C40, 14F99, 18E30
DOI: https://doi.org/10.1090/S0002-9947-1995-1283567-6
MathSciNet review: 1283567
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: S. Cappell and J. Shaneson (Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991), 521-551) have recently developed a theory of homology $ L$-classes, extending Goresky-MacPherson's homology $ L$-classes. In this paper we show that Cappell-Shaneson's homology $ L$-classes for compact complex, possibly singular, algebraic varieties can be interpreted as a unique natural transformation from a covariant cobordism function $ \Omega $ to the $ {\mathbf{Q}}$-homology functor $ {H_{\ast}}(;{\mathbf{Q}})$ satisfying a certain normalization condition, just like MacPherson's Chern classes and Baum-Fulton-MacPherson's Todd classes.


References [Enhancements On Off] (What's this?)

  • [BFM] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Étude Sci. Publ. Math. 45 (1975), 101-145. MR 0412190 (54:317)
  • [BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, analyse et topologie sur les espaces singulariers, Astérisque 100 (1982), 1-171. MR 751966 (86g:32015)
  • [Bo] A. Borel et al., Intersection cohomology, Progress in Math., vol. 50, Birkhäuser-Verlag, Boston, 1984.
  • [CS1] S. E. Cappell and J. L. Shaneson, Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991), 521-551. MR 1102578 (92d:57024)
  • [CS2] -, Genera of algebraic varieties, preprint, 1993.
  • [GM1] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), 135-162. MR 572580 (82b:57010)
  • [GM2] -, Intersection homology. II, Invent. Math. 71 (1983), 77-129. MR 696691 (84i:57012)
  • [Mac] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423-432. MR 0361141 (50:13587)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R20, 14C40, 14F99, 18E30

Retrieve articles in all journals with MSC: 57R20, 14C40, 14F99, 18E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1283567-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society