On the general notion of fully nonlinear second-order elliptic equations

Author:
N. V. Krylov

Journal:
Trans. Amer. Math. Soc. **347** (1995), 857-895

MSC:
Primary 35J60; Secondary 35J65

MathSciNet review:
1284912

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The general notion of fully nonlinear second-order elliptic equation is given. Its relation to so-called Bellman equations is investigated. A general existence theorem for the equations like is obtained as an example of an application of the general notion of fully nonlinear elliptic equations.

**[1]**M. F. Atiyah, R. Bott, and L. Gȧrding,*Lacunas for hyperbolic differential operators with constant coefficients. I*, Acta Math.**124**(1970), 109–189. MR**0470499****[2]**I. Ja. Bakel′man,*Geometricheskie metody resheniya ellipticheskikh uravnenii*, Izdat. “Nauka”, Moscow, 1965 (Russian). MR**0194727****[3]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation*, Comm. Pure Appl. Math.**37**(1984), no. 3, 369–402. MR**739925**, 10.1002/cpa.3160370306**[4]**L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations*, Comm. Pure Appl. Math.**38**(1985), no. 2, 209–252. MR**780073**, 10.1002/cpa.3160380206**[5]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian*, Acta Math.**155**(1985), no. 3-4, 261–301. MR**806416**, 10.1007/BF02392544**[6]**R. Courant,*Methods of mathematical physics*, Vol. 2, Interscience, New York, 1966.**[7]**Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions,*User’s guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), no. 1, 1–67. MR**1118699**, 10.1090/S0273-0979-1992-00266-5**[8]**Lars Gȧrding,*An inequality for hyperbolic polynomials*, J. Math. Mech.**8**(1959), 957–965. MR**0113978****[9]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[10]**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge, at the University Press, 1952. 2d ed. MR**0046395****[11]**L. Hörmander,*The analysis of linear partial differential operators*, Vols. 1, 2, Springer, New York, 1990.**[12]**Lars Hörmander,*An introduction to complex analysis in several variables*, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR**1045639****[13]**N. M. Ivochkina,*Description of cones of stability generated by differential operators of Monge-Ampère type*, Mat. Sb. (N.S.)**122(164)**(1983), no. 2, 265–275 (Russian). MR**717679****[14]**N. M. Ivochkina,*Solution of the Dirichlet problem for equations of 𝑚th order curvature*, Mat. Sb.**180**(1989), no. 7, 867–887, 991 (Russian); English transl., Math. USSR-Sb.**67**(1990), no. 2, 317–339. MR**1014618****[15]**N. V. Krylov,*Controlled diffusion processes*, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR**601776****[16]**-,*On control of a diffusion process up to the time of first exit from a region*, Izv. Akad. Nauk Armyan. SSR, Ser. Math. (1981), 1029-1048; English transl. Math. USSR-Izv.**19**(1982), 297-313.**[17]**-,*Nonlinear elliptic and parabolic equations of second order*, "Nauka", Moscow, 1985; English transl. by Reidel, Dordrecht, 1987.**[18]**N. V. Krylov,*On the first boundary value problem for nonlinear degenerate elliptic equations*, Izv. Akad. Nauk SSSR Ser. Mat.**51**(1987), no. 2, 242–269, 446 (Russian); English transl., Math. USSR-Izv.**30**(1988), no. 2, 217–244. MR**896996****[19]**N. V. Krylov,*Unconditional solvability of the Bellman equation with constant coefficients in convex domains*, Mat. Sb. (N.S.)**135(177)**(1988), no. 3, 297–311, 414 (Russian); English transl., Math. USSR-Sb.**63**(1989), no. 2, 289–303. MR**937642****[20]**N. V. Krylov,*Smoothness of the payoff function for a controllable diffusion process in a domain*, Izv. Akad. Nauk SSSR Ser. Mat.**53**(1989), no. 1, 66–96 (Russian); English transl., Math. USSR-Izv.**34**(1990), no. 1, 65–95. MR**992979****[21]**Marvin Marcus and Henryk Minc,*A survey of matrix theory and matrix inequalities*, Allyn and Bacon, Inc., Boston, Mass., 1964. MR**0162808****[22]**Wim Nuij,*A note on hyperbolic polynomials*, Math. Scand.**23**(1968), 69–72 (1969). MR**0250128****[23]**M. V. Safonov,*Classical solution of second-order nonlinear elliptic equations*, Izv. Akad. Nauk SSSR Ser. Mat.**52**(1988), no. 6, 1272–1287, 1328 (Russian); English transl., Math. USSR-Izv.**33**(1989), no. 3, 597–612. MR**984219**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J60,
35J65

Retrieve articles in all journals with MSC: 35J60, 35J65

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1995-1284912-8

Article copyright:
© Copyright 1995
American Mathematical Society