Infinitesimal bending and twisting in one-dimensional dynamics

Author:
Frederick P. Gardiner

Journal:
Trans. Amer. Math. Soc. **347** (1995), 915-937

MSC:
Primary 30C65; Secondary 30F30, 30F60, 32G15, 47B99

MathSciNet review:
1290717

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An infinitesimal theory for bending and earthquaking in one-dimensional dynamics is developed. It is shown that any tangent vector to Teichmüller space is the initial data for a bending and for an earthquaking ordinary differential equation. The discussion involves an analysis of infinitesimal bendings and earthquakes, the Hilbert transform, natural bounded linear operators from a Banach space of measures on the Möbius strip to tangent vectors to Teichmüller space, and the construction of a nonlinear right inverse for these operators. The inverse is constructed by establishing an infinitesimal version of Thurston's earthquake theorem.

**[1]**Lars V. Ahlfors,*Finitely generated Kleinian groups*, Amer. J. Math.**86**(1964), 413–429. MR**0167618****[2]**Lars Ahlfors and Lipman Bers,*Riemann’s mapping theorem for variable metrics*, Ann. of Math. (2)**72**(1960), 385–404. MR**0115006****[3]**Lipman Bers,*A non-standard integral equation with applications to quasiconformal mappings*, Acta Math.**116**(1966), 113–134. MR**0192046****[4]**Frederick P. Gardiner,*Teichmüller theory and quadratic differentials*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR**903027****[5]**Frederick P. Gardiner,*A correspondence between laminations and quadratic differentials*, Complex Variables Theory Appl.**6**(1986), no. 2-4, 363–375. MR**871741****[6]**Frederick P. Gardiner and Dennis P. Sullivan,*Symmetric structures on a closed curve*, Amer. J. Math.**114**(1992), no. 4, 683–736. MR**1175689**, 10.2307/2374795**[7]**Frederick P. Gardiner and Dennis Sullivan,*Lacunary series as quadratic differentials in conformal dynamics*, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 307–330. MR**1292907**, 10.1090/conm/169/01662**[8]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[9]**Oliver A. Goodman,*Metrized laminations and quasisymmetric maps*, Ph.D. thesis, Warwick University, 1989.**[10]**Paul Green,*Vector fields and Thurston's theory of earthquakes*, Ph.D. thesis, Warwick University, 1987.**[11]**Steven P. Kerckhoff,*The Nielsen realization problem*, Ann. of Math. (2)**117**(1983), no. 2, 235–265. MR**690845**, 10.2307/2007076**[12]**Irwin Kra,*Automorphic forms and Kleinian groups*, W. A. Benjamin, Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. MR**0357775****[13]**Subhashis Nag and Alberto Verjovsky,*𝐷𝑖𝑓𝑓(𝑆¹) and the Teichmüller spaces*, Comm. Math. Phys.**130**(1990), no. 1, 123–138. MR**1055689****[14]**Edgar Reich and Kurt Strebel,*Extremal quasiconformal mappings with given boundary values*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR**0361065****[15]**H. M. Reimann,*Ordinary differential equations and quasiconformal mappings*, Invent. Math.**33**(1976), no. 3, 247–270. MR**0409804****[16]**Dennis Sullivan,*Bounds, quadratic differentials, and renormalization conjectures*, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR**1184622****[17]**Dennis Sullivan,*Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains*, Ann. of Math. (2)**122**(1985), no. 3, 401–418. MR**819553**, 10.2307/1971308**[18]**William P. Thurston,*Earthquakes in two-dimensional hyperbolic geometry*, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91–112. MR**903860****[19]**Scott Wolpert,*The Fenchel-Nielsen deformation*, Ann. of Math. (2)**115**(1982), no. 3, 501–528. MR**657237**, 10.2307/2007011**[20]**A. Zygmund,*Smooth functions*, Duke Math. J.**12**(1945), 47–76. MR**0012691**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30C65,
30F30,
30F60,
32G15,
47B99

Retrieve articles in all journals with MSC: 30C65, 30F30, 30F60, 32G15, 47B99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1995-1290717-4

Article copyright:
© Copyright 1995
American Mathematical Society