Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A convergence theorem for Riemannian submanifolds

Author: Zhong Min Shen
Journal: Trans. Amer. Math. Soc. 347 (1995), 1343-1350
MSC: Primary 53C20; Secondary 53C15, 53C23, 53C30, 53C40
MathSciNet review: 1254853
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the convergence of Riemannian submanifolds. In particular, we prove that any sequence of closed submanifolds with bounded normal curvature and volume in a closed Riemannian manifold subconverge to a closed submanifold in the $ {C^{1,\alpha }}$ topology. We also obtain some applications to irreducible homogeneous manifolds and pseudo-holomorphic curves in symplectic manifolds.

References [Enhancements On Off] (What's this?)

  • [AL] L. Andersson, The Pogorelov-Klingenberg theorem for submanifolds with bounded normal curvature, Report UMINF-87-80, Univ. of UMEA, 1980.
  • [AM] M. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), 429-445. MR 1074481 (92c:53024)
  • [CGT] J. Cheeger, M. Gromov, and M. Tayler, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. MR 658471 (84b:58109)
  • [Ch] J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 96 (1970), 61-74. MR 0263092 (41:7697)
  • [Che] S. Y. Cheng, Eigenvalue comparison theorems and its geometry applications, Math. Z. 143 (1975), 289-297. MR 0378001 (51:14170)
  • [G1] M. Gromov, Structures metriques pour les varietes Riemanniennes, Cedic-Fernand Nathan, 1981. MR 682063 (85e:53051)
  • [G2] -, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
  • [GW] R. Greene and H. Wu, Lipschitz convergence of Riemannian manifolds, Pacific J. Math. 131 (1988), 119-141. MR 917868 (89g:53063)
  • [H] R. Howard, Private communication.
  • [HS] D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727. MR 0365424 (51:1676)
  • [JK] J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), 27-77. MR 679120 (84e:58023)
  • [K] A. Kasue, A convergence theorem for Riemannian manifolds and some applications, Nagoya Math. J. 114 (1989), 21-51. MR 1001487 (90g:53053)
  • [L1] P. Li, Eigenvalue estimates on homogeneous manifolds, Comment. Math. Helv. 55 (1980), 347-463. MR 593051 (81k:58067)
  • [L2] -, Minimal immersions of compact irreducible homogeneous Riemannian manifolds, J. Differential Geom. 16 (1981), 105-115. MR 633629 (83a:53057)
  • [MS] J. Michael and L. Simon, Sobolev and mean-value inequalities on generalized submanifolds of $ {\mathbb{R}^n}$, Comm. Pure Appl. Math. 26 (1973), 361-379. MR 0344978 (49:9717)
  • [N1] I. G. Nikolaev, Parallel translation and smoothness of the metric of spaces of bounded curvature, Soviet Math. Dokl. 21 (1980), 263-265. MR 561573 (81d:53052)
  • [N2] -, Smoothness of the metric of spaces with bilaterally bounded curvature in the space of A. D. Aleksandrov, Siberian Math. J. 24 (1983), 247-263.
  • [Ps] S. Peters, Convergence of Riemannian manifolds, Compositio Math. 62 (1987), 3-16. MR 892147 (88i:53076)
  • [PW] T. Parker and J. Wolfson, A compactness theorem for Gromov's moduli space, preprint, 1991.
  • [T] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. MR 0198393 (33:6551)
  • [Y] R. Ye, Gromov's compactness theorem for pseudo-holomorphic curves, preprint, 1991.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20, 53C15, 53C23, 53C30, 53C40

Retrieve articles in all journals with MSC: 53C20, 53C15, 53C23, 53C30, 53C40

Additional Information

Keywords: Riemannian submanifold, convergence in the $ {C^{1,\alpha }}$ topology, normal curvature, volume, isoperimetric inequality, injectivity radius, pseudo-holomorphic curve, homogeneous manifold
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society