THE DE BRANGES-ROVNYAK MODEL WITH FINITE-DIMENSIONAL COEFFICIENTS

JAMES GUYKER

Abstract. A characterization in terms of the canonical model spaces of L. de Branges and J. Rovnyak is obtained for Hilbert spaces of formal power series with vector coefficients which satisfy a difference-quotient inequality, thereby extending the closed ideal theorems of A. Beurling and P. D. Lax.

1. Introduction

This paper extends the well-known invariant subspace characterization of A. Beurling [3] and P. D. Lax [11] for the shift on the Hardy space of square summable power series with vector coefficients (cf. [10, 13–15]). The focus is instead on certain (not necessarily orthogonal) complements of contractively contained invariant manifolds of the shift. These are the spaces \(\mathcal{H}(B) \) of L. de Branges and J. Rovnyak [6–8]. In the Beurling-Lax theory, the key point is a dimension inequality. The inequality is trivial when the coefficient space has infinite dimension, so the essential content is in the finite-dimensional case. Previously only special cases of the more abstract problem have been treated [6, 9], but our methods generalize an argument from [7, Theorem 6]. The main difficulty again comes down to a dimension inequality in the finite-dimensional case. The purpose here is to derive new results on the structure of \(\mathcal{H}(B) \) spaces which reveal what is needed for the inequality to hold. As a consequence, we obtain a complete characterization of the spaces \(\mathcal{H}(B) \).

2. \(\mathcal{H}(B) \) Spaces

A basic concept in the de Branges-Rovnyak theory is complementation: A Hilbert space \(\mathcal{F} \) is contained contractively in a Hilbert space \(\mathcal{H} \) if \(\mathcal{F} \) is a submanifold of \(\mathcal{H} \) and if the inclusion map of \(\mathcal{F} \) into \(\mathcal{H} \) is a contraction. If \(\mathcal{F} \) is contained contractively in \(\mathcal{H} \), then the space complementary to \(\mathcal{F} \) in \(\mathcal{H} \) is the Hilbert space \(\mathcal{G} \) of elements \(\zeta \) of \(\mathcal{H} \) with the property that

\[
\| \zeta \|_{\mathcal{H}}^2 = \sup \{ \| \zeta + f \|_{\mathcal{H}}^2 - \| f \|_{\mathcal{F}}^2 : f \in \mathcal{F} \}
\]

is finite. The space \(\mathcal{G} \) is contained contractively in \(\mathcal{H} \). Moreover, \(\mathcal{G} \) is the unique Hilbert space such that the inequality \(\| k \|_{\mathcal{H}}^2 \leq \| f \|_{\mathcal{G}}^2 + \| g \|_{\mathcal{G}}^2 \) holds whenever \(k = f + g \) is a decomposition of \(k \) in \(\mathcal{H} \) into \(f \) in \(\mathcal{F} \) and \(g \) in...
and such that every element \(k \) in \(\mathcal{H} \) admits a decomposition for which equality holds.

Let \(\mathcal{C} \) be a finite-dimensional Hilbert space, and let \(\mathcal{H} \) be a Hilbert space of formal power series \(f(z) \) whose coefficients are in \(\mathcal{C} \) such that

\[
(1) \quad \| [f(z) - f(0)]/z \|_\mathcal{C}^2 \leq \| f(z) \|_\mathcal{H}^2 - \| f(0) \|_\mathcal{H}^2.
\]

Then \(\mathcal{H} \) is contained contractively in \(\mathcal{C}(z) \), the Hilbert space of square summable power series \(\sum a_n z^n \) with \(a_n \) in \(\mathcal{C} \) and norm given by \(\| \sum a_n z^n \|_{\mathcal{C}(z)} = \sum |a_n|^2 \).

Let \(B(z) \) be a power series whose coefficients are operators on \(\mathcal{C} \) such that

\[
\| B(z)f(z) \|_{\mathcal{L}(z)} \leq \| f(z) \|_{\mathcal{C}(z)} \text{ whenever } f(z) \text{ is in } \mathcal{C}(z).
\]

Cauchy multiplication by \(B(z) \) thus defines a contraction operator on \(\mathcal{C}(z) \) which will be denoted by \(T_B \). The range \(\mathcal{M}(B) \) of \(T_B \) becomes a Hilbert space in the unique norm with the property that

\[
\| T_B f \|_{\mathcal{M}(B)} = \| f \|_{\mathcal{C}(z)} \text{ whenever } f \text{ is orthogonal to the kernel of } T_B.
\]

Furthermore, \(\mathcal{M}(B) \) is contained contractively in \(\mathcal{C}(z) \), and multiplication by \(z \) is a contraction on \(\mathcal{M}(B) \).

The de Branges-Rovnyak space \(\mathcal{H}(B) \) is defined to be the complementary space to \(\mathcal{M}(B) \) in \(\mathcal{C}(z) \). The space \(\mathcal{H}(B) \) satisfies (1) and is an underlying space for canonical models of contractions on Hilbert space \([1, 2, 12, 16, 17] \).

Multiplication by \(z \) is a contraction on the space \(\mathcal{M} \) complementary to \(\mathcal{H} \) in \(\mathcal{C}(z) \). In \([6] \) (cf. \([5, \text{Theorem 6}]\)), de Branges extended the Beurling-Lax theorem by showing that if multiplication by \(z \) is isometric on \(\mathcal{M} \), then \(\mathcal{H} \) is isometrically equal to a space \(\mathcal{H}(B) \). It should be further noted that when \(\mathcal{C} \) is infinite dimensional, any space \(\mathcal{H} \) which satisfies (1) is isometrically equal to a space \(\mathcal{H}(B) \) \([4, \text{Theorem 11}]\).

Let \(\mathcal{H}(B) \) be a given space. Then \(\mathcal{H}(B) \) is also contained contractively in \(\mathcal{H}(zB) \). The space \(\mathcal{H}(zB) \) may be obtained as those elements \(h(z) \) of \(\mathcal{C}(z) \) such that \([h(z) - h(0)]/z \) is in \(\mathcal{H}(B) \) and \(\| h(z) \|_{\mathcal{H}(zB)} = \|[h(z) - h(0)]/z\|_{\mathcal{H}(B)} + \| h(0) \|_{\mathcal{H}}^2 \).

The complementary space to \(\mathcal{H}(B) \) in \(\mathcal{C}(zB) \) is the space \(\mathcal{B}(z) \) with \(\| B(z)c \|_{\mathcal{C}(z)} = |c|_\mathcal{C} \) for every \(c \) orthogonal to \(\mathcal{C} \cap \ker T_B \). Let us define linear transformations \(J_\pm \) from \(\mathcal{H}(B) \) into \(\mathcal{C} \), with ranges denoted \(\mathcal{C}_\pm \), as follows: \(J_+ f = f(0) \) and \(J_- \) is the operator whose adjoint is given by \(J_- c = [B(z) - B(0)]c/z \). Let \(B(z) = \sum B_n z^n \), and let \(B_n \) be the adjoint of \(B_n \) on \(\mathcal{C} \). Then \(J_+ c = [1 - B(z)B(0)]c/z \); and since \(\mathcal{C} \) is finite dimensional, \(\mathcal{C}_+ = (1 - B_0 B_0) \mathcal{C} \) and \(\mathcal{C}_- = (\bigvee_{n \geq 1} B_n^* \mathcal{C}) \subseteq (1 - \overline{B}_0 B_0) \mathcal{C} \).

Let \(R(0) \) denote the difference-quotient transformation on \(\mathcal{H}(B) \), which maps \(f(z) \) into \([f(z) - f(0)]/z \). Then \(R(0)*f(z) = z f(z) - B(z)J_- f \) so that \([1 - R(0)*R(0)]f(z) = [B(z) - B(0)](J_- - f)/z \) and \([1 - R(0)*R(0)]f(z) = (J_+ f) + B(z)J_- R(0)f \). Note that if \([1 - R(0)*R(0)]f(z) = c + B(z)c_- \) with \(c \) in \(\mathcal{C} \) and \(c_- \) in \(\mathcal{C}_- \), then necessarily \(c = J_+ f \) and \(c_- = J_- R(0)f \). Therefore, since \(\dim \mathcal{C} \) is finite,

\[
\text{rank}[1 - R(0)*R(0)] = \dim \{ (J_+ f, J_- R(0)f) : f \in \mathcal{H}(B) \}
\]

(2) \[\geq \dim \mathcal{C}_+ = \text{rank}(1 - \overline{B}_0 B_0) \]

(3) \[\geq \dim \mathcal{C}_- = \text{rank}[1 - R(0)R(0)*]. \]

More precisely, the following will turn out to be a defining property of the spaces \(\mathcal{H}(B) \).
Theorem 1. Let $R(0)$ be the difference-quotient transformation on a given space $\mathcal{H}(B)$. Then

$$\text{rank}[1 - R(0)^* R(0)] = \dim \{ c \in \mathcal{C} : B(z)c \in \mathcal{H}(B) \} + \text{rank}[1 - R(0) R(0)^*].$$

Proof. Suppose that $B(z)c$ is in $\mathcal{H}(B)$. Then $c = (J- f) + d$ where f is in $\mathcal{H}(B)$ and $[B(z) - B(0)]d/z = 0$. Moreover,

$$(4) \quad [1 - R(0)^* R(0)] \{[R(0)^* f] + B(z)c\} = (B_0 d) + B(z) J_0 f.$$

Let $J_0 f_1, \ldots, J_0 f_{s_0}$ be a basis for the subspace $\mathcal{C}_- = \{ c \in \mathcal{C} : B(z)c \in \mathcal{H}(B) \}$, and let $J_0 g_1, \ldots, J_0 g_t$ be a basis for \mathcal{C}_+ where f_i and g_j are in $\mathcal{H}(B)$ for all i and j. Suppose that there are constants $\lambda_1, \ldots, \lambda_{s_0 + t}$ such that

$$0 = \sum_{i=1}^{s_0} \lambda_i [1 - R(0)^* R(0)] \{[R(0)^* f_i] + B(z) J_0 f_i\} + \sum_{j=1}^{t} \lambda_{s_0 + j} [1 - R(0)^* R(0)] g_j.$$

Equivalently by (4) we have

$$0 = \left(\sum_{i=1}^{s_0} \lambda_{s_0 + j} J_0 g_j \right) + B(z) J_0 \left[\sum_{i=1}^{t} \lambda_{s_0 + j} R(0) g_j + \sum_{i=1}^{s_0} \lambda_i f_i \right]$$

so that $\sum_{i=1}^{s_0} \lambda_{s_0 + j} J_0 g_j = 0$ and hence $\lambda_{s_0 + j} = 0$ $(j = 1, \ldots, t)$. It follows that $\sum_i \lambda_i J_0 f_i = 0$ and thus $\lambda_i = 0$ for all i. Therefore,

$$\text{rank}[1 - R(0)^* R(0)] \geq s_0 + t. \quad (5)$$

Let $c_i = J_0 f_i$ $(i = 1, \ldots, s_0)$ and expand $\{c_i\}$ to a basis c_1, \ldots, c_s of $\{ c \in \mathcal{C} : B(z)c \in \mathcal{H}(B) \}$. For every $j > s_0$ let us write $c_j = (J_0 f_j) + d_j$ as above where f_j is in $\mathcal{H}(B)$ and d_j is orthogonal to \mathcal{C}_-. By (4), $B_0 d_j$ is in \mathcal{C}_+, so it is in $(B_0 \mathcal{C}) \cap (1 - B_0 B_0) \mathcal{C}$. But since \mathcal{C} is finite dimensional, it follows that this intersection coincides with $B_0 (1 - \overline{B_0 B_0}) \mathcal{C}$, and hence $B_0 d_j = B_0 e_j$ where e_j is in $(1 - \overline{B_0 B_0}) \mathcal{C}$. Thus $d_j - e_j$ is in $\ker B_0$, which is also contained in $(1 - \overline{B_0 B_0}) \mathcal{C}$, and consequently d_j is in $[(1 - \overline{B_0 B_0}) \mathcal{C}] \subset \mathcal{C}_-$.

Now $\{d_j : j > s_0\}$ is linearly independent: For suppose $\sum \alpha_j d_j = 0$. Then $\sum_{j > s_0} \alpha_j c_j = \sum_{j > s_0} \alpha_j J_0 f_j$ is in \mathcal{C}_+, so there exist β_i such that $\sum_{j > s_0} \alpha_j c_j = \sum_{i \leq s_0} \beta_i c_i$. Since $\{c_i\}$ is linearly independent, $\alpha_j = 0$ for all j, and hence

$$t = \dim \mathcal{C}_+ = \text{rank}(1 - B_0 \overline{B_0}) = \text{rank}(1 - \overline{B_0 B_0}) \quad = \dim \{[(1 - \overline{B_0 B_0}) \mathcal{C}] \subset \mathcal{C}_- \} + \dim \mathcal{C}_- \quad \geq (s - s_0) + \text{rank}[1 - R(0) R(0)^*].$$

In conjunction with (5) we have

$$\text{rank}[1 - R(0)^* R(0)] \geq s + \text{rank}[1 - R(0) R(0)^*].$$

To verify the reverse inequality, it suffices to show that there exist $r = \text{rank}[1 - R(0)^* R(0)] - \text{rank}[1 - R(0) R(0)^*]$ linearly independent vectors a_i in \mathcal{C} such that $B(z)a_i$ is in $\mathcal{H}(B)$. By inequalities (2) and (3), it follows that $r = r_0 + r_1$ where $r_0 = \text{rank}[1 - R(0)^* R(0)] - \dim \mathcal{C}_+$ and $r_1 = \dim \{ \text{ran}(1 - \overline{B_0 B_0}) \mathcal{C} \}$.
Suppose that $r_0 > 0$ and recall the basis $\{J+g_j\}$ of \mathcal{C}_+. As above, $\{[1 - R(0)^* R(0)]g_j\}$ is linearly independent, so if \mathcal{G} is its span, then there are r_0 vectors $[1 - R(0)^* R(0)]g_i$ ($i = 1, \ldots, r_0$), with \mathcal{G} in $\mathcal{H}(B)$, which form a basis of $\text{ran}[1 - R(0)^* R(0)] \oplus \mathcal{G}$. Now there exist constants λ_{ij} such that $J+g_i = \sum_{j=1}^{r_0} \lambda_{ij} J+g_j$ for each i. Let us define $a_i = J_- R(0)(g_i - \sum_j \lambda_{ij} g_j)$ for $i = 1, \ldots, r_0$. Then $B(z)a_i = [1 - R(0)^* R(0)](g_i - \sum_j \lambda_{ij} g_j)$ is in $\mathcal{H}(B)$, and $\{a_1, \ldots, a_{r_0}\}$ is linearly independent: Suppose that $\sum \mu_i a_i = 0$. Then

$$\sum \mu_i [1 - R(0)^* R(0)]g_i = \sum \mu_i [1 - R(0)^* R(0)] \left(\sum_j \lambda_{ij} g_j \right)$$

which must be zero since it is in both \mathcal{G} and \mathcal{G}^\perp. Therefore $\mu_i = 0$ for every i.

Next, suppose that $r_1 > 0$ and let $\hat{d}_1, \ldots, \hat{d}_{r_1}$ be a basis of $\text{ran}(1 - \overline{B}_0 B_0) \oplus \mathcal{C}_-$. Then $B(z)\hat{d}_j = B_0 \hat{d}_j$ and $\hat{d}_j = (1 - \overline{B}_0 B_0) b_j$ for some b_j in \mathcal{C}. Let $\hat{f}_j(z) = [1 - B(z) \overline{B}(0)] B_0 b_j$ and define $a_{r_0+j} = \hat{d}_j + J_- R(0) \hat{f}_j$ for $j = 1, \ldots, r_1$. Then $B(z)a_{r_0+j} = [1 - R(0)^* R(0)] \hat{f}_j$ is in $\mathcal{H}(B)$.

Finally, $\{a_i : i = 1, \ldots, r = r_0 + r_1\}$ is linearly independent: Suppose that there are constants ν_1, \ldots, ν_r such that

$$\nu_0 = \sum_{i=1}^{r_0} \nu_i a_i = \sum_{i=1}^{r_1} \nu_{i} a_i + \sum_{j=1}^{r_1} \nu_{r_0+j} [\hat{d}_j + J_- R(0) \hat{f}_j].$$

It follows that $\sum_{j=1}^{r_1} \nu_{r_0+j} \hat{d}_j = 0$ since a_i ($1 \leq i \leq r_0$) and $J_- R(0) \hat{f}_j$ ($1 \leq j \leq r_1$) are in \mathcal{C}_-, and \hat{d}_j is orthogonal to \mathcal{C}_- for every j. Therefore $\nu_{r_0+j} = 0$ ($j = 1, \ldots, r_1$), and consequently $\sum_{j=1}^{r_1} \nu_{i} a_i = 0$ so that $\nu_i = 0$ for all i. \quad \square

3. The characterization

Let \mathcal{H} be a space which satisfies (1), and let \mathcal{H}' be the Hilbert space of all power series $h(z)$ such that $[h(z) - h(0)]/z$ is in \mathcal{H} with $\|h(z)\|_{\mathcal{H}'}^2 = \|[h(z) - h(0)]/z\|_{\mathcal{H}'}^2 + |h(0)|_{\mathcal{H}}^2$. Then \mathcal{H}' satisfies (1), and \mathcal{H} is contained contractively in \mathcal{H}'. Let \mathcal{R} be the complementary space to \mathcal{H} in \mathcal{H}', and let $i_{\mathcal{R}}$ and $i_{\mathcal{H}}$ denote the respective inclusion maps of \mathcal{H} and \mathcal{R} into \mathcal{H}'. Then every h in \mathcal{H}' admits the unique decomposition $h = (i_{\mathcal{R}}^* h) + (i_{\mathcal{H}}^* h)$ where $\|h\|_{\mathcal{H}'}^2 = \|i_{\mathcal{R}}^* h\|_{\mathcal{R}}^2 + \|i_{\mathcal{H}}^* h\|_{\mathcal{H}}^2$.

A fundamental result from the theory of $\mathcal{H}(B)$ spaces is: \mathcal{H} is isometrically equal to a space $\mathcal{H}(B)$ if and only if the dimension of \mathcal{R} does not exceed the dimension of \mathcal{C} [6]. More generally, if $\mathcal{C} \subset \mathcal{H}$ and $\dim \mathcal{R} \leq \dim \mathcal{C}$, then \mathcal{H} is a space $\mathcal{H}(B)$ where the coefficients of $B(z)$ act on \mathcal{C}.

Lemma. Let \mathcal{F} be the subspace of elements of \mathcal{H} for which equality holds in (1). Then \mathcal{R} and $\mathcal{H} \cap \mathcal{R}$ are contained in $\mathcal{H}' \oplus \mathcal{F}$ and $\mathcal{H} \oplus \mathcal{F}$ respectively. Moreover, $\dim \mathcal{R} = \dim \mathcal{H}' \oplus \mathcal{F}$ and $\dim \mathcal{H} \cap \mathcal{R} = \dim \mathcal{H} \oplus \mathcal{F}$.

Proof. As in [9], \mathcal{F} is a (closed) subspace of \mathcal{H} and is contained isometrically in \mathcal{H}'. Therefore for any f in \mathcal{F} and g in \mathcal{R}, we have

$$\langle f, g \rangle_{\mathcal{H}'} = \langle f, i_{\mathcal{R}} g \rangle_{\mathcal{H}} = \langle i_{\mathcal{R}}^* f, g \rangle_{\mathcal{R}} = \langle 0, g \rangle_{\mathcal{R}} = 0.$$

Hence \mathcal{F} is a subset of $\mathcal{H}' \oplus \mathcal{R}$. \quad \square
The restriction of \(i^*_\mathbb{R} \) to \(\mathcal{H}' \oplus \mathcal{I} \) is linear and continuous and has trivial kernel: if \(i^*_\mathbb{R} h = 0 \) for some \(h \in \mathcal{H}' \oplus \mathcal{I} \), then \(i^*_\mathbb{R} h = h \), so \(h \) is also in \(\mathcal{I} \), and thus \(h = 0 \). It follows that \(\dim \mathcal{H}' \oplus \mathcal{I} = \dim i^*_\mathbb{R}(\mathcal{H}' \oplus \mathcal{I}) \leq \dim \mathbb{R} \), and hence \(\dim \mathbb{R} = \dim \mathcal{H}' \oplus \mathcal{I} \).

Next, let \(g \) be in \(\mathcal{H} \cap \mathbb{R} \). Then \(g \) is in \(\mathcal{H}' \oplus \mathcal{I} \) but also in \(\mathcal{H} \oplus \mathcal{I} \) since for any \(f \) in \(\mathcal{I} \)

\[
(f, g)_{\mathcal{H}} = \langle i^*_\mathbb{R} f, g \rangle_{\mathcal{I}} = \langle f, i^*_\mathbb{R} g \rangle_{\mathcal{H}} = \langle f, g \rangle_{\mathcal{I}} = 0.
\]

Therefore \((\mathcal{H} \cap \mathbb{R}) \subseteq (\mathcal{H} \oplus \mathcal{I}) \). Finally \(\dim \mathcal{H} \cap \mathbb{R} = \dim \mathcal{H} \oplus \mathcal{I} \) as above since \(i^*_\mathbb{R}(\mathcal{H} \oplus \mathcal{I}) \) is contained in \(\mathcal{H} \cap \mathbb{R} \). □

The following will distinguish the spaces \(\mathcal{H}(B) \).

Corollary 1. Let \(\mathcal{F}(B) \) be the subspace of elements of a given space \(\mathcal{H}(B) \) for which equality holds in (1). Then

\[
\dim J_+ \mathcal{F}(B) = \dim (\mathcal{C} \cap \ker T_B) + \text{rank}[1 - R(0)R(0)^*].
\]

Proof. Since \(B(z)\mathbb{C} \) is finite dimensional, the lemma implies that \(\mathcal{H}(B) \oplus \mathcal{F}(B) \) coincides with \(\mathcal{H}(B) \cap B(z)\mathbb{C} \). By (1), the kernel of \(1 - R(0)^*R(0) \) is contained in \(\mathcal{F}(B) \) and is exactly the kernel of the restriction of \(J_+ \) to \(\mathcal{F}(B) \). Thus since \(1 - R(0)^*R(0) \) has finite rank and

\[
J_+ \mathcal{F}(B) = J_+ \{\text{ran}[1 - R(0)^*R(0)] \cap \mathcal{F}(B)\},
\]

it follows that

\[
\text{rank}[1 - R(0)^*R(0)] = \dim \{\text{ran}[1 - R(0)^*R(0)] \cap \mathcal{F}(B)\} + \dim[\mathcal{H}(B) \cap \mathcal{F}(B)] = \dim J_+ \mathcal{F}(B) + \dim[\mathcal{H}(B) \cap B(z)\mathbb{C}].
\]

The corollary now follows from Theorem 1 since we also have

\[
\text{rank}[1 - R(0)^*R(0)] = \dim (\mathcal{C} \cap \ker T_B) + \dim[\mathcal{H}(B) \cap B(z)\mathbb{C}] + \text{rank}[1 - R(0)R(0)^*].
\]

By [7, Lemma 4], equality holds in (1) for a given space \(\mathcal{H}(B) \) if and only if \(\mathcal{H}(B) \) contains no nonzero element of the form \(B(z)c \) with \(c \) in \(\mathbb{C} \). An immediate consequence of the above results is

Corollary 2. Let \(\mathcal{H}(B) \) be a given space. Then \(\text{rank}[1 - R(0)^*R(0)] = \text{rank}[1 - R(0)R(0)^*] \) if and only if equality holds in (1) for every \(f(z) \) and there is no nonzero vector \(c \) such that \(B(z)c = 0 \).

We now have the proposed characterization.

Theorem 2. Let \(\mathcal{H} \) be a Hilbert space of formal power series which satisfies (1), and let \(\mathcal{F} \) be the subspace of those series for which equality holds in (1). Then \(\mathcal{H} \) is isometrically equal to a space \(\mathcal{H}(B) \) if and only if the dimension of the space of constant coefficients of elements of \(\mathcal{F} \) is at least the rank of \(1 - TT^* \) where \(T \) is the difference-quotient transformation on \(\mathcal{H} \).

Proof. Any space \(\mathcal{H}(B) \) has the stated property by Corollary 1.

Conversely, suppose that \(\mathcal{H} \) is a space which satisfies (1) and the dimension hypothesis. Let \(\mathcal{H}', \mathcal{R}, i_\mathcal{H} \) and \(i_\mathbb{R} \) be defined as above, and let \(f(z) \) and \(g(z) \) be in \(\mathcal{H} \). Since
\[(i^\mathcal{H}_g^* f(z), g(z))_{\mathcal{H}} = (zf(z), i^\mathcal{H}_g g(z))_{\mathcal{H}} = (f(z), Tg(z))_{\mathcal{H}}, \]

it follows that \(T^* f(z) = i^\mathcal{H}_g z f(z) \).

Let \(S \) denote the difference-quotient transformation on \(\mathcal{H}' \). Then

\[(1 - TT^*)f(z) = f(z) - Ti^\mathcal{H}_g zf(z) = f(z) - S[zf(z) - i^\mathcal{H}_g zf(z)] = Si^\mathcal{H}_g zf(z). \]

More generally, \(S\mathcal{H} \) is contained in the range of \(1 - TT^* \): Let \(g(z) \) be in \(\mathcal{H} \) such that \(g(z) \) is orthogonal to \(i^\mathcal{H}_g z f(z) \) for every \(f(z) \) in \(\mathcal{H} \). Then

\[0 = (g(z), i^\mathcal{H}_g z f(z))_{\mathcal{H}} = (g(z), zf(z))_{\mathcal{H}} = (Sg(z), f(z))_{\mathcal{H}} \]

for every \(f(z) \) in \(\mathcal{H} \). Letting \(f(z) = Sg(z) \), we conclude that \(g(z) \) is constant. Hence \(S\mathcal{H} = S \oplus \{i^\mathcal{H}_g z f(z) : f(z) \in \mathcal{H}\} \), which is contained in \((1 - TT^*)\mathcal{H} \) since the rank of \(1 - TT^* \) is finite by the hypothesis.

It follows that \(\mathcal{H} \) is finite dimensional since

\[\dim \mathcal{H} \leq \dim S\mathcal{H} + \dim \ker S \leq \text{rank}(1 - TT^*) + \dim \mathcal{E}. \]

Thus by the lemma \(\mathcal{H} = \mathcal{H}' \oplus \mathcal{F} \).

Furthermore, since \(\mathcal{H}' \) contains \(\mathcal{E} \), the kernel of the restriction of \(S \) to \(\mathcal{H}' \oplus \mathcal{F} \) is \(\mathcal{E} \oplus \{f(0) : f(z) \in \mathcal{F}\} \). Hence, we have that

\[\dim \mathcal{H} = \dim [\mathcal{E} \oplus \{f(0) : f(z) \in \mathcal{F}\}] + \dim S\mathcal{H} \]

\[\leq \dim \mathcal{E} - \dim \{f(0) : f(z) \in \mathcal{F}\} + \text{rank}(1 - TT^*) \]

\[\leq \dim \mathcal{E} \]

by the hypothesis. Therefore, \(\mathcal{H} \) is isometrically equal to a space \(\mathcal{H}(B) \). \(\square \)

Finally, any space which satisfies (1) is at least a reducing subspace of \(R(0) \) on some space \(\mathcal{H}(B) \).

Corollary 3. Let \(\mathcal{H} \), \(\mathcal{F} \) and \(T \) be defined as in Theorem 2, but assume on the other hand that

\[\delta = \text{rank}(1 - TT^*) - \dim \{f(0) : f(z) \in \mathcal{F}\} \]

is finite and positive. If \(\mathcal{E} \) is any Hilbert space with dimension at least \(\delta \), then \(\mathcal{H} \oplus \mathcal{E}(z) \) is isometrically equal to a space \(\mathcal{H}(B) \).

Acknowledgment

I am grateful to the referee for suggesting many improvements in this article.

References

Department of Mathematics, State University College of New York at Buffalo, Buffalo, New York 14222-1095

E-mail address: guykerj@sunysb.edu