Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces


Authors: A. Jourani and L. Thibault
Journal: Trans. Amer. Math. Soc. 347 (1995), 1255-1268
MSC: Primary 49J52; Secondary 46A30, 46N10, 47N10, 54C60, 90C31
DOI: https://doi.org/10.1090/S0002-9947-1995-1290719-8
MathSciNet review: 1290719
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper establishes verifiable conditions in terms of approximate subdifferentials implying openness and metric regularity of multivalued mappings in Banach spaces. The results are then applied to derive Lagrange multipliers for general nonsmooth vector optimization problems.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin, Lipschitz behavior of solutions to nonconvex problems, Math. Oper. Res. 9 (1984), 87-111. MR 736641 (86f:90119)
  • [2] J. P. Aubin and H. Frankowska, On inverse functions theorems for set-valued maps, J. Math. Pures Appl. (9) 71 (1987), 71-89. MR 884814 (88e:49029)
  • [3] J. M. Borwein, Stability and regular point of inequality systems, J. Optim. Theory Appl. 48 (1986), 9-52. MR 825383 (87m:58018)
  • [4] -, Epi-Lipschitz-like sets in Banach space: theorems and examples, Nonlinear Anal. Theory Methods Appl. 11 (1987), 1207-1217. MR 913679 (89b:90225)
  • [5] J. M. Borwein and H. M. Strojwas, Tangential approximations, Nonlinear Anal. Theory Methods Appl. 9 (1985), 1347-1366. MR 820646 (87i:90320)
  • [6] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for openness and regularity for set-valued maps, J. Math. Anal. Appl. 47 (1988), 441-459. MR 961349 (90h:90185)
  • [7] F. H. Clarke, Optimization and nonsmooth analysis, Wiley-Interscience, New York, 1983. MR 709590 (85m:49002)
  • [8] S. Dolecki, Semi continuity in constrained optimization. I, Control Cybernet. 7 (1978), 5-16. MR 641777 (82m:49021a)
  • [9] -, Semi continuity in constrained optimization. Ib, Control Cybernet. 7 (1978), 17-28.
  • [10] -, Semi continuity in constrained optimization, II, Control Cybernet. 7 (1978), 51-68.
  • [11] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. MR 0346619 (49:11344)
  • [12] H. Frankowska, An open mapping principle for set-valued maps, J. Math. Anal. Appl. 127 (1987), 172-180. MR 904219 (88i:49011)
  • [13] L. M. Graves, Some mapping theorems, Duke Math. J. 17 (1950), 111-114. MR 0035398 (11:729e)
  • [14] A. D. Ioffe, Regular points of Lipschitz mappings, Trans. Amer. Math. Soc. 251 (1979), 61-69. MR 531969 (80h:58022)
  • [15] -, Approximate subdifferentials and applications 1: The finite dimensional theory, Trans. Amer. Math. Soc. 281 (1984), 289-316.
  • [16] -, Approximate subdifferentials and applications 2: Functions on locally convex spaces, Mathematika 33 (1986), 111-128. MR 859504 (87k:49028)
  • [17] -, Approximate subdifferentials and applications 3: Metric theory, Mathematika 36 (1989), 1-38. MR 1014198 (90g:49012)
  • [18] -, On the local surjection property, Nonlinear Anal. Theory Methods Appl. 11 (1987), 203-218. MR 886649 (88h:90239)
  • [19] A. Jourani, Regularity and strong sufficient optimality conditions in differentiable optimization problems, Numerical Funct. Anal. Optim. 14 (1993), 69-87. MR 1210462 (93k:49023)
  • [20] -, Metric regularity and second order necessary optimality conditions for minimization problems under inclusion constraints, J. Optim. Theory Appl. 81 (1994), 97-120. MR 1275959 (95d:90081)
  • [21] -, Qualification conditions for multivalued functions in Banach spaces with applications to nonsmooth vector optimization problems, Math. Programming 66 (1994), 1-23. MR 1297260 (95h:49020)
  • [22] A. Jourani and L. Thibault, Approximate subdifferential and metric regularity: The finite dimensional case, Math. Programming 47 (1990), 203-218. MR 1059393 (92d:49024)
  • [23] -, Approximations and metric regularity in mathematical programming in Banach space, Math. Oper. Res. 18 (1993), 390-401. MR 1250125 (95a:90163)
  • [24] -, Metric regularity for strongly compactly Lipschitzian mappings (to appear). MR 1312592 (95j:49017)
  • [25] -, Approximate subdifferentials of composite functions, Bull. Austral. Math. Soc. 47 (1993), 443-455. MR 1220319 (94d:49020)
  • [26] A. Ya. Kruger, A covering theorem for set-valued mappings, Optim. 19 (1988), 763-780. MR 967038 (89m:49030)
  • [27] L. Ljusternik, Conditional extrema of functional, Math. USSR-Sb. 41 (1934), 390-401.
  • [28] P. D. Loewen, Limits of Fréchet normals in nonsmooth analysis, Optimization and Nonlinear Analysis (A. Ioffe, M. Marcus, and S. Reich, eds.) Pitman Res. Notes Math., 1990, pp. 178-188. MR 1184642 (93h:49028)
  • [29] B. S. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk UzSSR 28 (1984), 976-979. MR 771737 (86c:49018)
  • [30] -, Approximation methods in problems of optimization and control, "Nauka", Moscow, 1988; English transl., Wiley-Interscience (to appear). MR 945143 (89m:49001)
  • [31] -, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. (to appear). MR 1156300 (94a:49011)
  • [32] B. S. Mordukhovich and Y. Shao, Differential characterizations of covering and metric regularity of multifunction between Banach spaces (to appear).
  • [33] J. P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. Theory Methods Appl. 13 (1989), 629-643. MR 998509 (90h:54024)
  • [34] S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), 130-143. MR 0430181 (55:3188)
  • [35] -, Stability theorems for systems of inequalities, Part II: differential nonlinear systems, SIAM J. Numerical Anal. 13 (1976), 497-513. MR 0410522 (53:14271)
  • [36] R. T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. (3) 39 (1978), 331-355. MR 548983 (80j:46070)
  • [37] -, Lipschitz properties of multifunctions, Nonlinear Anal. Theory Methods Appl. 9 (1985), 867-885. MR 799890 (87a:90149)
  • [38] L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions, Travaux du Séminaire d'Analyse Convexe, vol. 8, U.E.R. Math., Montpellier, 1978. MR 513674 (80c:49010)
  • [39] -, Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems, Optimization and nonlinear analysis (A. Ioffe, M. Marcus, and S. Reich, eds.), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1990.
  • [40] -, Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems (to appear).
  • [41] -, On subdifferentials of optimal value functions, SIAM J. Control Optim. 29 (1991), 1019-1036. MR 1110085 (92e:49027)
  • [42] C. Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J. 25 (1975), 438-441. MR 0388032 (52:8869)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49J52, 46A30, 46N10, 47N10, 54C60, 90C31

Retrieve articles in all journals with MSC: 49J52, 46A30, 46N10, 47N10, 54C60, 90C31


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290719-8
Keywords: Opennes, metric regularity, approximate subdifferential, strongly compactly Lipschitzian mappings, partially compactly epi-Lipschitzian mappings, Lagrange multipliers
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society